991 resultados para OHMIC DISSIPATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the energy dissipation mechanisms in single-crystal silicon MEMS/NEMS resonators are particularly important to maximizing an important figure of merit relevant for miniature sensor and signal processing applications: the Quality factor (Q) of resonance. This paper discusses thermoelastic dissipation (TED) as the dominant internal-friction mechanism in flexural mode MEMS/NEMS resonators. Criteria for optimizing the geometrical design of flexural mode MEMS/NEMS resonators are theoretically established with a view towards minimizing the TED for single-crystal silicon MEMS/NEMS flexural mode resonators.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concept based upon Equal Channel Angular Extrusion (ECAE) is developed and introduced in the form of a Universal Re-usable Energy Absorption Device 'UREAD'. In impact situations the device utilises the energy required to extrude deformable materials through the shear planes of a set of intersecting channels and hence provides the means to protect engineering structures. The impact force is absorbed through the resistance of a deformable material and the energy is dissipated through an operational stroke. This paper examines the use of this new concept under dynamic loading. The device performance and usability during dynamic impacts are tested in a landing frame type experiment where the effectiveness of the technique in reducing impact loads and energy are also examined. © (2011) Trans Tech Publications Switzerland.