344 resultados para OFDM
Resumo:
7.5Gb/s real-time end-to-end optical OFDM (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally, for the first time, using a live-optimized RSOA intensity modulator having a modulation bandwidth as narrow as 1GHz. Colourless real-time 16-QAM-encoded OOFDM signal transmission at 7.5Gb/s over 25km SSMF is achieved across the C-band in simple IMDD systems without in-line optical amplification and dispersion compensation. Copyright © 2010 The authors.
Resumo:
Detailed investigations of the effectiveness of three widely adopted optical orthogonal frequency division multiplexing (OOFDM) adaptive loading algorithms, including power loading (PL), bit loading (BL), and bit-and-power loading (BPL), are undertaken, over < 100km single-mode fibre (SMF) system without incorporating inline optical amplification and chromatic dispersion (CD) compensation. It is shown that the BPL (PL) algorithm always offers the best (worst) transmission performance. The absolute transmission capacity differences between these algorithms are independent of transmission distance and launched optical power. Moreover, it is shown that in comparison with the most sophisticated BPL algorithm, the simplest PL algorithm is effective in escalating the OOFDM SMF links performance to its maximum potential. On the other hand, when employing a large number of subcarriers and a high digital-to-analogue DAC)/analogue-to-digital (ADC) sampling rate, the sophisticated BPL algorithm has to be adopted. © 2011 IEEE.
Resumo:
Wavelength offset super Gaussian optical filters enable 7dB increases in optical power budget of 11.25Gb/s optical OFDM PON systems using directly modulated DFBs, considerably relax filter bandwidth requirement and improve performance robustness to bandwidth variation. © 2011 Optical Society of America.
Resumo:
Low-cost, narrow modulation bandwidth, un-cooled VCSELs can be utilized to directly modulate 64-QAM-encoded 11.25Gb/s signals for end-to-end real-time optical OFDM transmission over 25km SSMF IMDD systems with excellent performance robustness. © 2011 Optical Society of America.
Resumo:
Recent real-time optical OFDM (OOFDM) research progress is reviewed extensively in terms of adaptive transceiver design, intensity modulators, synchronisation techniques and network architectures. Results indicate that OOFDM is feasible for mass deployment in PONs. © 2011 Optical Society of America.
Resumo:
10Gb/s downstream and 6Gb/s upstream over 40km SSMFs are feasible for double-sideband AMOOFDM signals in wavelength-reused bidirectional-transmission colorless-WDM-PONs incorporating SOA/RSOA intensity modulators in OLTs/ONUs. Such performances are improved to 23Gb/s downstream and 8Gb/s upstream when single-sideband subcarrier-modulation is utilized. ©2010 IEEE.
Resumo:
Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a WDM-PON incorporating a SOA intensity modulator and a RSOA intensity modulator in the OLT and ONU, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5Gb/s. It is shown that the RB noise and crosstalk effects are the dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10Gb/s downstream and 6Gb/s upstream over 40km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing inline optical amplification and chromatic dispersion compensation. In particular, the transmission performance can be improved to 23Gb/s downstream and 8Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems. Copyright © 2010 The authors.
Resumo:
The use of 0.02nm bandwidth optical bandpass filters with 0.01nm wavelength offsets from optical carrier wavelengths in the optical OFDM (OOFDM) transmitter improves optical power budgets by 7dB at a total channel BER of 1×10 -3 in directly modulated laser-based IMDD PON systems. ©2010 Optical Society of America.
Resumo:
Three novel designs of adaptively modulated optical orthogonal frequency division multiplexing modems using subcarrier modulation (AMOOFDM-SCM) are proposed, for the first time, each of which requires a single IFFT/FFT operation. These designs has a number of salient advantages including a significantly simplified modem configuration due to the involvement of a single IFFT/FFT operation, input/output reconfigurability, dynamic bandwidth allocation capability, cost reduction and system flexibility and performance robustness to variations in transmission link conditions. Investigations show that these three modems are capable of supporting >60Gb/s AMOOFDM-SCM signal transmission over 20km, 40km and 60km single-mode fibre-based intensity modulation and direct detection transmission links without optical amplification and chromatic dispersion compensation. Copyright © 2010 The authors.
Resumo:
The transmission performance of multi-channel adaptively modulated optical OFDM (AMOOFDM) signals is numerically investigated, for the first time, in optical amplification- and chromatic dispersion compensation-free, intensity-modulation and direct-detection systems incorporating directly modulated DFB lasers (DMLs). It is shown that adaptive modulation not only reduces significantly the nonlinear WDM impairments induced by the effects of cross-phase modulation and four-wave mixing, but also compensates effectively for the DML-induced frequency chirp effect. In comparison with identical modulation, adaptive modulation improves the maximum achievable signal transmission capacity of a central channel by a factor of 1.3 and 3.6 for 40km and 80km SMFs, respectively, with corresponding dynamic input optical power ranges being extended by approximately 5dB. In addition, adaptive modulation also enables cross-channel complementary modulation format mapping, leading to an improved transmission capacity of the entire WDM system. Copyright © 2010 The authors.
Resumo:
The 7.5-Gb/s real-time end-to-end optical orthogonal frequency-division- multiplexing (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally using a live-optimized reflective semiconductor optical amplifier intensity modulator having a modulation bandwidth as narrow as 1 GHz. Real-time OOFDM signal transmission at 7.5 Gb/s over 25-km standard single-mode fiber is achieved across the $C$-band in simple intensity modulation and direct detection systems without in-line optical amplification and dispersion compensation. © 2006 IEEE.