992 resultados para Nutrient contents


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood lipid response to a given dietary intervention could be determined by the effect of diet, gene variants or gene–diet interactions. The objective of the present study was to investigate whether variants in presumed nutrient-sensitive genes involved in lipid metabolism modified lipid profile after weight loss and in response to a given diet, among overweight European adults participating in the Diet Obesity and Genes study. By multiple linear regressions, 240 SNPs in twenty-four candidate genes were investigated for SNP main and SNP–diet interaction effects on total cholesterol, LDL-cholesterol, HDL-cholesterol and TAG after an 8-week low-energy diet (only main effect), and a 6-month ad libitum weight maintenance diet, with different contents of dietary protein or glycaemic index. After adjusting for multiple testing, a SNP–dietary protein interaction effect on TAG was identified for lipin 1 (LPIN1) rs4315495, with a decrease in TAG of − 0·26 mmol/l per A-allele/protein unit (95 % CI − 0·38, − 0·14, P= 0·000043). In conclusion, we investigated SNP–diet interactions for blood lipid profiles for 240 SNPs in twenty-four candidate genes, selected for their involvement in lipid metabolism pathways, and identified one significant interaction between LPIN1 rs4315495 and dietary protein for TAG concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. OBJECTIVE: This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. DESIGN: In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. RESULTS: After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. CONCLUSION: The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleoenvironmental and paleoclimatic changes during the Valanginian carbon isotopic excursion (CIE) have been investigated in the western Tethys. For this purpose, bulk-rock and clay mineralogies, as well as phosphorus (P) contents were evaluated in a selection of five sections located in the Vocontian Basin (Angles, SE France; Alvier, E Switzerland; Malleval, E France), and the Lombardian Basin (Capriolo, N Italy; Breggia, S Switzerland). Within the CIE interval, bulk-rock and clay mineralogies are inferred to reflect mostly climate change. The onset of the CIE (Busnardoites campylotoxus ammonite Zone) is characterized by higher detrital index (DI: sum of the detrital minerals divided by calcite contents) values and the presence of kaolinite in their clay-mineral assemblages. In the late Valanginian (from the Saynoceras verrucosum Zone up to the end of the Valanginian), the samples show relatively variable DI and lower values or the absence of kaolinite. The variation in the mineralogical composition is interpreted as reflecting a change from a climate characterized by optimal weathering conditions associated with an increase in terrigenous input on the southern European margin during the CIE towards an overall unstable climate associated with drier conditions in the late Valanginian. This is contrasted by a dissymmetry (proximal vs distal) along the studied transect, the northern Tethyan margin being more sensitive to changes in continental input compared to the distal environments. P accumulation rates (PAR) present similar features. In the Vocontian basin, P content variations are associated with changes in terrigenous influx, whereas in the Lombardian basin (i.e. Capriolo and Breggia), PAR values are less well correlated. This is mainly because the deeper part of the Tethys was less sensitive to changes in continental inputs. The onset of the CIE (top of the B. campylotoxus Zone) records a general increase in PAR suggesting an increase in marine nutrient levels. This is linked to higher continental weathering rates and the enhanced influx of nutrients into the ocean. In the period corresponding to the shift itself, P contents show a dissymmetry between the Vocontian and Lombardian basins (proximal vs distal). For the sections of Malleval, Alvier and Angles, a decrease in P concentrations associated to a decrease in detrital input is observed. In Capriolo and Breggia, PAR show maximum values during the plateau, indicating a more complex interaction between different P sources. The time interval including the top of S. verrucosum Zone up to the end of the Valanginian is characterized by variable PAR values, suggesting variable nutrient influxes. These changes are in agreement with an evolution towards seasonally contrasted conditions in the late Valanginian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the allelochemicals ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities and their relationships with phenolic acid (PhAs) contents and root growth of soybean (Glycine max (L.) Merr.) were examined. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.1 to 1 mM) for 48 h. Both compounds (at 0.5 and 1 mM) decreased root length (RL), fresh weight (FW) and dry weight (DW) and increased PhAs contents. At 0.5 and 1 mM, FA increased soluble POD activity (18% and 47%, respectively) and cell wall (CW)-bound POD activity (61% and 34%), while VA increased soluble POD activity (33% and 17%) but did not affect CW-bound POD activity. At I mM, FA increased (82%) while VA reduced (32%) PAL activities. The results are discussed on the basis of the role of these compounds on phenylpropanoid metabolism and root growth and suggest that the effects caused on POD and PAL activities are some of the many mechanisms by which allelochemicals influence plant growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium (K) is required in high doses by the banana (Musa sp.) plant and interacts with other nutrient elements in which banana tissues are maintained under in vitro condition as a consequence modifications in the plant metabolism take place mainly in nitrogen (N) compounds, such as proteins, amino acids, and secondary compounds. When K is present in concentrations lower than that required, diamines such as putrescine and poliamines are formed. This metabolic disorder can also be correlated with the presence of different inorganic N forms, such as nitrate (NO3) and ammonium (NH4), and the ratios between both ions as well. In order to follow the physiological performance of the interrelationships, K/putrescine and of the NO3/NH4 ratio in the tissue of banana vitroplantlets, shoot apex of two banana cvs. Nanica and Prata Ana were maintained in modified MS medium in the presence of six different doses of K: 5, 10, 15, 20, 25, and 30 mM. After the period of tissue proliferation the cultures were transferred to rooting media containing the same different K doses. Dry matter, K, putrescine, and spermidine contents and their accumulation were determined in the shoots and roots of the vitroplantlets and in the shoot apex of the explant donor cultivar as well as the corresponding values for the whole vitroplantlets calculated. The data were statistically analyzed. The contents and accumulations of putrescine and spermidine in banana tissues were enhanced as K concentration decreased in the medium: four times (0.19% of the dry matter) for cv. Nanica and eight times (0.25% of the dry matter) for cv. Prata Ana. This behavior was not only related to the K depletion but to the NO3/NH4 ratio as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mentha piperita L. is an aromatic and medicinal species of the family Lamiaceae, known as mint or peppermint, and its leaves and branches produce essential oil rich in menthol. This study aimed to evaluate physiological indexes, macro- and micronutrients inthe shootsand essential oil of Mentha piperita L. grown in nutrient solution number 2 of Hoagland and Arnon (1950) with different N, P, K and Mg levels. Shoot length, dry mass of the different organs, total dry mass, leaf area, essential oil yield and composition, and macronutrient (N, P, K, Mg, Ca, S) and micronutrient (Mn, Cu, Fe, Zn) contents in the shoot were evaluated. Plants treated with 65%N/50%P/25%K/100%Mg had a tendency towards longer shoot, greaterroot and leaf blade dry masses, higher essential oil yield, higher menthol levels and lower menthone levels. The results showed that Mentha can be grown in nutrient solution by reducing 65% N, 50% P, 25% K and 100% Mg. This solution had better development compared to the other tested treatments. Therefore,we recommendMentha piperita L. to be grown with such nutrient levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt marshes are coastal ecosystem in the upper intertidal zone between internal water and sea and are widely spread throughout Italy, from Friuli Venezia Giulia, in the North, to Sicily, in the South. These delicate environments are threatened by eutrophication, habitat conversion (for land reclaiming or agriculture) and climate change impacts such as sea level rise. The objectives of my thesis were to: 1) analyse the distribution and biomass of the perennial native cordgrass Spartina maritima (one of the most relevant foundation species in the low intertidal saltmarsh vegetation in the study region) at 7 sites along the Northern Adriatic coast and relate it to critical environmental parameters and 2) to carry out a nutrient manipulation experiment to detect nutrient enrichment effects on S. maritima biomass and vegetation characteristics. The survey showed significant differences among sites in biological response variables - i.e., live belowground, live aboveground biomass, above:belowground (R:S) biomass ratio, % cover, average height and stem density – which were mainly related to differences in nitrate, nitrite and phosphate contents in surface water. Preliminary results from the experiment (which is still ongoing) showed so far no significant effects of nutrient enrichment on live aboveground and belowground biomass, R:S ratio, leaf %Carbon, average height, stem density and random shoot height; however, a significantly higher (P=0.018) increase in leaf %Nitrogen content in treated plots indicated that nutrient uptake had occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complex study of influence of various environmental factors on rates of oxygen (M_O2 ), ammonium (M_NH4), and phosphate (M_PO4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of the Kunashir Island. The following environmental factors have been included into the investigation: photosynthetically active radiation (PAR); ammonium (NH4); phosphate (PO4); and contents of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl) in tissue. Population of agar-containing seaweed A. tobuchiensis forms a layer with thickness up to 0.5 m, which occupies about 23.3 km**2; biomass is equal to 125000 tons. Quantitative assessment of organic matter production and nutrient consumption during oxygen metabolism has been carried out for the whole population. It has been shown that daily oxygen metabolism depends on PAR intensity, concentrations of PO4 and NH4 in seawater, and contents of N and P in tissues (r**2=0.78, p<0.001). Average daily NH4 consumption is 0.21 µmol/g of dry weight/hour and depends on NH4 and O2 concentrations in seawater and on ? and Chl a contents in algal tissues (r**2=0.64, p<0.001). Average daily PO4 consumption is 0.01 µmol/g of dry weight/hour and depends on NH4 concentrations in seawater and on P contents in algal tissues (r**2=0.40, p<0.001).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.