926 resultados para Nutrient Assimilation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reef-building corals form essential, mutualistic endosymbiotic associations with photosynthetic Symbiodinium dinoflagellates, providing their animal host partner with photosynthetically derived nutrients that allow the coral to thrive in oligotrophic waters. However, little is known about the dynamics of these nutritional interactions at the (sub)cellular level. Here, we visualize with submicrometer spatial resolution the carbon and nitrogen fluxes in the intact coral-dinoflagellate association from the reef coral Pocillopora damicornis by combining nanoscale secondary ion mass spectrometry (NanoSIMS) and transmission electron microscopy with pulse-chase isotopic labeling using [(13)C]bicarbonate and [(15)N]nitrate. This allows us to observe that (i) through light-driven photosynthesis, dinoflagellates rapidly assimilate inorganic bicarbonate and nitrate, temporarily storing carbon within lipid droplets and starch granules for remobilization in nighttime, along with carbon and nitrogen incorporation into other subcellular compartments for dinoflagellate growth and maintenance, (ii) carbon-containing photosynthates are translocated to all four coral tissue layers, where they accumulate after only 15 min in coral lipid droplets from the oral gastroderm and within 6 h in glycogen granules from the oral epiderm, and (iii) the translocation of nitrogen-containing photosynthates is delayed by 3 h. IMPORTANCE: Our results provide detailed in situ subcellular visualization of the fate of photosynthesis-derived carbon and nitrogen in the coral-dinoflagellate endosymbiosis. We directly demonstrate that lipid droplets and glycogen granules in the coral tissue are sinks for translocated carbon photosynthates by dinoflagellates and confirm their key role in the trophic interactions within the coral-dinoflagellate association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While much of the literature on immigrants' assimilation has focused on countries with a large tradition of receiving immigrants and with flexible labor markets, very little is known on how immigrants adjust to other types of host economies. With its severe dual labor market, and an unprecedented immigration boom, Spain presents a quite unique experience to analyze immigrations' assimilation process. Using data from the 2000 to 2008 Labor Force Survey, we find that immigrants are more occupationally mobile than natives, and that much of this greater flexibility is explained by immigrants' assimilation process soon after arrival. However, we find little evidence of convergence, especially among women and high skilled immigrants. This suggests that instead of integrating, immigrants occupationally segregate, providing evidence consistent with both imperfect substitutability and immigrants' human capital being under-valued. Additional evidence on the assimilation of earnings and the incidence of permanent employment by different skill levels also supports the hypothesis of segmented labor markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central to the mutualistic arbuscular mycorrhizal symbiosis is the arbuscule, the site where symbiotic phosphate is delivered. Initial investigations in legumes have led to the exciting observation that symbiotic phosphate uptake not only enhances plant growth but also regulates arbuscule dynamics and is, furthermore, required for maintenance of the symbiosis. This review evaluates the possible role of the phosphate ion, not only as a nutrient but also as a signal that is necessary for reprogramming the host cortex cell for symbiosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poverty has been consistently associated with poorer health. The factors driving this association with poorer health among disadvantaged groups have been extensively investigated and include economic, ecological, psycho-social and structural factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of andesite is an important issue in petrology because andesite is the main eruptive product at convergent margins, corresponds to the average crustal composition and is often associated with major Cu-Au mineralization. In this study we present petrographic, mineralogical, geochemical and isotopic data for basaltic andesites of the latest Pleistocene Pilavo volcano, one of the most frontal volcanoes of the Ecuadorian Quaternary arc, situated upon thick (30-50 km) mafic crust composed of accreted Cretaceous oceanic plateau rocks and overlying mafic to intermediate Late Cretaceous-Late Tertiary magmatic arcs. The Pilavo rocks are basaltic andesites (54-57 center dot 5 wt % SiO(2)) with a tholeiitic affinity as opposed to the typical calc-alkaline high-silica andesites and dacites (SiO(2) 59-66 wt %) of other frontal arc volcanoes of Ecuador (e.g. Pichincha, Pululahua). They have much higher incompatible element contents (e.g. Sr 650-1350 ppm, Ba 650-1800 ppm, Zr 100-225 ppm, Th 5-25 ppm, La 15-65 ppm) and Th/La ratios (0 center dot 28-0 center dot 36) than Pichincha and Pululahua, and more primitive Sr ((87)Sr/(86)Sr similar to 0 center dot 7038-0 center dot 7039) and Nd (epsilon(Nd) similar to +5 center dot 5 to +6 center dot 1) isotopic signatures. Pilavo andesites have geochemical affinities with modern and recent high-MgO andesites (e.g. low-silica adakites, Setouchi sanukites) and, especially, with Archean sanukitoids, for both of which incompatible element enrichments are believed to result from interactions of slab melts with peridotitic mantle. Petrographic, mineral chemistry, bulk-rock geochemical and isotopic data indicate that the Pilavo magmatic rocks have evolved through three main stages: (1) generation of a basaltic magma in the mantle wedge region by flux melting induced by slab-derived fluids (aqueous, supercritical or melts); (2) high-pressure differentiation of the basaltic melt (at the mantle-crust boundary or at lower crustal levels) through sustained fractionation of olivine and clinopyroxene, leading to hydrous, high-alumina basaltic andesite melts with a tholeiitic affinity, enriched in incompatible elements and strongly impoverished in Ni and Cr; (3) establishment of one or more mid-crustal magma storage reservoirs in which the magmas evolved through dominant amphibole and clinopyroxene (but no plagioclase) fractionation accompanied by assimilation of the modified plutonic roots of the arc and recharge by incoming batches of more primitive magma from depth. The latter process has resulted in strongly increasing incompatible element concentrations in the Pilavo basaltic andesites, coupled with slightly increasing crustal isotopic signatures and a shift towards a more calc-alkaline affinity. Our data show that, although ultimately originating from the slab, incompatible element abundances in arc andesites with primitive isotopic signatures can be significantly enhanced by intra-crustal processes within a thick juvenile mafic crust, thus providing an additional process for the generation of enriched andesites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used a hemolytic plaque assay for insulin to determine whether the same pancreatic B cells respond to D-glucose, 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and the association of this nonmetabolized analogue of L-leucine with either the monomethyl ester of succinic acid (SME) or the dimethyl ester of L-glutamic acid (GME). During a 30-min incubation in the absence of D-glucose, BCH alone (5 mM) had no effect on insulin release. In contrast, the combination of BCH with either SME (10 mM) or GME (3 mM) stimulated insulin release to the same extent observed in the sole presence of 16.7 mM D-glucose. The effects of BCH plus SME and BCH plus GME on both percentage of secreting B cells and total insulin output were little affected in the presence of D-glucose concentrations ranging from 0 to 16.7 mM. Varying the concentration of SME from 2 to 10 mM also did not influence these effects. In other experiments, the very same B cells were first exposed 45 min to 16.7 mM D-glucose, then incubated 45 min in the presence of only BCH and SME. Under these conditions, most (80.3 +/- 2.5%) of the cells contributing to insulin release did so during both incubation periods. Furthermore, virtually all cells responding to BCH and SME during the second incubation corresponded to cells also responsive to D-glucose during the first incubation. Similar observations were made when the sequence of the two incubations was reversed.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1-/- mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The overall intake of energy and nutrients in the Granada EPIC-cohort (European Prospective Investigation into Cancer and Nutrition) is examined in order to assess compliance with the Spanish Nutritional Objectives (NO) and the Recommended Intakes (RI). METHODS: During recruitment (1992-1996), 7,789 participants, aged 35-69, were asked about diet through a validated diet history questionnaire. Nutrient intake is compared to the NO and RI that were valid at that time. Risk of inadequate intake is estimated as the percentage of the sample with intakes: ≤ 1/3 RI (high risk), ≤ 2/3 RI- > 1/3 RI (moderate risk), ≤ RI- > 2/3 RI, > RI. Differences in intakes have been analyzed by sex and age, and by smoking status and BMI. RESULTS: The daily intake of nutrients did not meet the NO as the total contribution of energy from proteins and fats exceeded these guidelines. Whilst intake of most nutrients was above the RI, the amount of iron, magnesium and vitamins D and E provided by the diet was not enough to meet the RI: in women aged 20-49 years, about 55% were at moderate risk for iron inadequacy, and a 20% of women for magnesium. Both sexes were at high risk of inadequacy for vitamin D, although sunlight exposure may supply adequate amounts. Never smokers showed a higher compliance to the NO. CONCLUSION: At recruitment, the nutrient profile of the diet was unbalanced. The observed nutrient inadequacy for iron, magnesium and vitamin E might be attributed to inappropriate dietary habits, and may have implications for future disease risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Following the complete sequencing of the human genome, the field of nutrition has begun utilizing this vast quantity of information to comprehensively explore the interactions between diet and genes. This approach, coined nutrigenomics, aims to determine the influence of common dietary ingredients on the genome, and attempts to relate the resulting different phenotypes to differences in the cellular and/or genetic response of the biological system. However, complementary to defining the biological outcomes of dietary ingredients, we must also understand the influence of the multiple factors (such as the microbiota, bile, and function of transporters) that may contribute to the bioavailability, and ultimately bioefficacy, of these ingredients. The gastrointestinal tract (GIT) is the body's foremost tissue boundary, interacting with nutrients, exogenous compounds and microbiota, and whose condition is influenced by the complex interplay between these environmental factors and genetic elements. In order to understand GIT nutrient-gene interactions, our goal was to comprehensively elucidate the region-specific gene expression underlying intestinal functions. We found important regional differences in the expression of members of the ATP-binding cassette family of transporters in the mouse intestine, suggesting that absorption of dietary compounds may vary along the GIT. Furthermore, the influence of the microbiota on host gene expression indicated that this luminal factor predominantly influences immune function and water transport throughout the GIT; however, the identification of region-specific functions suggest distinct host-bacterial interactions along the GIT. Thus, these findings reinforce that to understand nutrient bioavailability and GIT function, one must consider the physiologically distinct regions of the gut. Nutritional molecules absorbed by the enterocytes of the GIT enter circulation and will be selectively absorbed and metabolised by tissues throughout the body; however, their bioefficacy in the body will depend on the unique and shared molecular mechanisms of the various tissues. Using a nutrigenomic approach, the biological responses of the liver and hippocampus of mice fed different long chain-polyunsaturated fatty acids diets revealed tissue-specific responses. Furthermore, we identified stearoyl-CoA desaturase as a hepatic target for arachidonic acid, suggesting a potentially novel molecular mechanism that may protect against diet-induced obesity. In summary, this work begins to unveil the fundamentally important role that nutrigenomics will play in unravelling the molecular mechanisms, and those exogenous factors capable of influencing these mechanisms, that regulate the bioefficacy of nutritional molecules. RÉSUMÉ Suite au séquençage complet du génome humain, le domaine de la nutrition a commencé à utiliser cette vaste quantité d'information pour explorer de manière globale les interactions entre la nourriture et les gènes. Cette approche, appelée « nutrigenomics », a pour but de déterminer l'influence d'ingrédients couramment utilisés dans l'alimentation sur le génome, et d'essayer de relier ces différents phénotypes, ainsi révélés, à des différences de réponses cellulaires et/ou génétiques. Cependant, en plus de définir les effets biologiques d'ingrédients alimentaires, il est important de comprendre l'influence des multiples facteurs (telle que la microflore, la bile et la fonction des transporteurs) pouvant contribuer à la bio- disponibilité et par conséquent à l'efficacité de ces ingrédients. Le tractus gastro-intestinal (TGI), qui est la première barrière vers les tissus, interagit avec les nutriments, les composés exogènes et la microflore. La fonction de cet organe est influencée par les interactions complexes entre les facteurs environnementaux et les éléments génétiques. Dans le but de comprendre les interactions entre les nutriments et les gènes au niveau du TGI, notre objectif a été de décrire de manière globale l'expression génique spécifique de chaque région de l'intestin définissant leurs fonctions. Nous avons trouvé d'importantes différences régionales dans l'expression des transporteurs de la famille des « ATP-binding cassette transporter » dans l'intestin de souris, suggérant que l'absorption des composés alimentaires puisse varier le long de l'intestin. De plus, l'étude des effets de la microflore sur l'expression des gènes hôtes a indiqué que ce facteur de la lumière intestinale influence surtout la fonction immunitaire et le transport de l'eau à travers l'intestin. Cependant, l'identification des fonctions spécifiques de chaque région suggère des interactions distinctes entre l'hôte et les bactéries le long de l'intestin. Ainsi, ces résultats renforcent l'idée que la compréhension de la bio-disponibilité des nutriments, et par conséquent la fonction du TGI, doit prendre en considération les différences régionales. Les molécules nutritionnelles transportées par les entérocytes jusqu'à la circulation sanguine, sont ensuite sélectivement absorbées et métabolisées par les différents tissus de l'organisme. Cependant, leur efficacité biologique dépendra du mécanisme commun ou spécifique de chaque tissu. En utilisant une approche « nutriogenomics », nous avons pu mettre en évidence les réponses biologiques spécifiques du foie et de l'hippocampe de souris nourris avec des régimes supplémentés avec différents acides gras poly-insaturés à chaîne longue. De plus, nous avons identifié la stearoyl-CoA desaturase comme une cible hépatique pour l'acide arachidonique, suggérant un nouveau mécanisme moléculaire pouvant potentiellement protéger contre le développement de l'obésité. En résumé, ce travail a permis de dévoiler le rôle fondamental qu'une approche telle que la « nutrigenomics » peut jouer dans le décryptage des mécanismes moléculaires et de leur régulation par des facteurs exogènes, qui ensemble vont contrôler l'efficacité biologique des nutriments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'objectiu general del projecte de tesi és el d'estudiar la resposta de les espècies algals a canvis en la disponibilitat de nutrients (i.e. NH4+/NO3-/PO43-). La hipòtesi de partida és que les alteracions en les concentracions absolutes i relatives de nutrients provoquen canvis en l'activitat de les espècies algals que seran més o menys intensos en funció de l’espècie i que són fruit de les característiques eco-evolutives intrínseques de cadascuna. Els objectius concrets es diferencien per l’escala temporal a la que s’observa la resposta, que va des de minuts fins a setmanes: Objectiu 1. Analitzar canvis a curt termini en l’activitat de les espècies degut a augments puntuals en la concentració absoluta i relativa de nutrients (NH4+/NO3-/ PO43-). S'ha vist que algunes espècies redueixen l’activitat fotosintètica a curt termini per destinar tots els recursos a l’assimilació de nutrients (Elrifi i Turpin 1986). S’estudiarà si aquesta pauta es troba de forma generalitzada i si respon a patrons evolutius, funcionals (mida, forma...) o ecològics (disponibilitat de nutrients). Objectiu 2. Analitzar, a mig termini, l’activitat de les espècies algals a diferents concentracions de NH4+/NO3-/ PO43-. Les respostes s’intentaran modelar, de manera que els paràmetres es puguin considerar trets funcionals característics de les espècies. S'estudiarà si la variabilitat en aquests trets respon a patrons evolutius o a d’altres trets funcionals com per exemple la mida. Objectiu 3. Analitzar com afecta, a llarg termini, la disponibilitat de nutrients en la composició d’espècies. Es detectarà quines espècies són més sensibles a les condicions de NH4+:NO3- i N:P del medi, i com es relaciona això amb les respostes específiques trobades en els objectius anteriors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses. METHODOLOGY/PRINCIPAL FINDINGS We identified nutrient patterns from food frequency questionnaires (FFQ) in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and used 24-hour dietary recall (24-HDR) data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA) was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312). Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436) provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC) 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores. CONCLUSION/SIGNIFICANCE The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs in term of food sources. These outcomes open research opportunities and perspectives of using nutrient patterns in future studies particularly at international level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity results from the organism's inability to maintain energy balance over a long term. Childhood obesity and its related factors and pathological consequences tend to persist into adulthood. A cluster of factors, including high energy density in the diet (high fat intake), low energy expenditure, and disturbed substrate oxidation, favour the increase in fat mass. Oxidation of three major macronutrients and their roles in the regulation of energy balance, particularly in children and adolescents, are discussed. Total glucose oxidation is not different between obese and lean children; exogenous glucose utilization is higher whereas endogenous glucose utilization is lower in obese compared with lean children. Carbohydrate composition of the diet determines carbohydrate oxidation regardless of fat content of the diet. Both exogenous and endogenous fat oxidation are higher in obese than in lean subjects. The influence of high fat intake on accumulation of fat mass is operative rather over a long term. Several future directions are addressed, such that a combination of increased physical activity and modification in diet composition, in terms of energy density and glycemic index, is recommended for children and adolescents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of diet composition [high-carbohydrate, low-fat (HC) and high-fat, low-carbohydrate (HF) diets] on macronutrient intakes and nutrient balances was investigated in young men of normal body weight. Eleven subjects were studied on two occasions for 48 h in a whole-body indirect calorimeter in a crossover design. Subjects selected their meals from a list containing a large variety of common food, which had a food quotient > 0.85 for the HC diet and < 0.85 for the HF diet. The average ad libitum intake was 14.41 +/- 0.85 MJ/d (67%, 18%, and 15% of energy as carbohydrate, fat, and protein, respectively) with the HC diet and 18.25 +/- 0.90 MJ/d (26%, 61%, and 13% of energy as carbohydrate, fat, and protein, respectively) with the HF diet. Total energy expenditure was not significantly influenced by diet composition: 10.46 +/- 0.27 and 10.97 +/- 0.22 MJ/d for the HC and HF diets, respectively. During the 2 test days, cumulative carbohydrate storage was 418 +/- 72 and 205 +/- 47 g, and fat balance was 29 +/- 17 and 291 +/- 29 g with the HC and HF diets, respectively. Only the HF diet induced a significantly positive fat balance. These results emphasize the important role of the dietary fat content in body fat storage.