926 resultados para Number Theory


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate some open problems in the area of combinatorial number theory referred to as zero-sum theory. A zero-sequence in a finite cyclic group G is said to have the basic property if it is equivalent under group automorphism to one which has sum precisely IGI when this sum is viewed as an integer. This thesis investigates two major problems, the first of which is referred to as the basic pair problem. This problem seeks to determine conditions for which every zero-sequence of a given length in a finite abelian group has the basic property. We resolve an open problem regarding basic pairs in cyclic groups by demonstrating that every sequence of length four in Zp has the basic property, and we conjecture on the complete solution of this problem. The second problem is a 1988 conjecture of Kleitman and Lemke, part of which claims that every sequence of length n in Zn has a subsequence with the basic property. If one considers the special case where n is an odd integer we believe this conjecture to hold true. We verify this is the case for all prime integers less than 40, and all odd integers less than 26. In addition, we resolve the Kleitman-Lemke conjecture for general n in the negative. That is, we demonstrate a sequence in any finite abelian group isomorphic to Z2p (for p ~ 11 a prime) containing no subsequence with the basic property. These results, as well as the results found along the way, contribute to many other problems in zero-sum theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <>, qui s'observe dans les <>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Réalisé en cotutelle avec l'Université Paris-Diderot.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the locally free class group of an order in a semisimple algebra over a number field is isomorphic to a certain ray class group. This description is then used to present an algorithm that computes the locally free class group. The algorithm is implemented in MAGMA for the case where the algebra is a group ring over the rational numbers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lecture notes in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exam and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercises and solutions in LaTex