997 resultados para Nuclear matter


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Extended quark distribution functions are presented obtained by fitting a large amount of experimental data of the l-A DIS process on the basis of an improved nuclear density model. The experimental data of l-A DIS processes with A >= 3 in the region 0.0010 <= x <= 0.9500 axe quite satisfactorily described by using the extended formulae. Our knowledge of the influence of nuclear matter on the quark distributions is deepened.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By including the scalar isovector meson delta, we extend the relativistic mean field model and the one-boson exchange model of changing K-meson in the framework of Schaffner's relativistic mean field model. We re-consider the coupling constants for the interactions between the meson and the baryon and the interactions of the K meson with different mesons as well in various parameter sets. Using our model, we discuss the effective masses of K mesons in the hyperon-rich nuclear matter. We find that the density modification of the K meson mass in the strange nuclear matter is smaller than that in the pure nuclear matter. The influence of the scalar isovector meson 6 on the effective mass of kaon is rather evident. But the extent of the influence is different in different parameter sets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the composition and the equation of state of the kaon condensed phase in neutrino-free and neutrino-trapped star matter within the framework of the Brueckner-Hartree-Fock approach with three-body forces. We find that neutrino trapping shifts the onset density of kaon condensation to a larger baryon density, and reduces considerably the kaon abundance. As a consequence, when kaons are allowed, the equation of state of neutrino-trapped star matter becomes stiffer than the one of neutrino free matter. The effects of different three-body forces are compared and discussed. Neutrino trapping turns out to weaken the role played by the symmetry energy in determining the composition of stellar matter, and thus reduces the difference between the results obtained by using different three-body forces.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Delta isobar components in the nuclear many-body wave function are investigated for the deuteron, light nuclei (16O), and infinite nuclear matter within the framework of the coupled-cluster theory. The predictions derived for various realistic models of the baryon-baryon interaction are compared to each other. These include local (V28) and nonlocal meson exchange potentials (Bonn2000) but also a model recently derived by the Salamanca group accounting for quark degrees of freedom. The characteristic differences which are obtained for the NDelta and Delta Delta correlation functions are related to the approximation made in deriving the matrix elements for the baryon-baryon interaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The antikaon optical potential in hot and dense nuclear matter is studied within the framework of a coupled-channel self-consistent calculation taking, as bare meson-baryon interaction, the meson-exchange potential of the Jlich group. Typical conditions found in heavy-ion collisions at GSI are explored. As in the case of zero temperature, the angular momentum components larger than L=0 contribute significantly to the finite temperature antikaon optical potential at finite momentum. It is found that the particular treatment of the medium effects has a strong influence on the behavior of the antikaon potential with temperature. Our self-consistent model, in which antikaons and pions are dressed in the medium, gives a moderately temperature dependent antikaon potential which remains attractive at GSI temperatures, contrary to what one finds if only nuclear Pauli blocking effects are included.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We explore the ability of the recently established quasilocal density functional theory for describing the isoscalar giant monopole resonance. Within this theory we use the scaling approach and perform constrained calculations for obtaining the cubic and inverse energy weighted moments (sum rules) of the RPA strength. The meaning of the sum rule approach in this case is discussed. Numerical calculations are carried out using Gogny forces and an excellent agreement is found with HF+RPA results previously reported in literature. The nuclear matter compression modulus predicted in our model lies in the range 210230 MeV which agrees with earlier findings. The information provided by the sum rule approach in the case of nuclei near the neutron drip line is also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a Beta-stable composition that includes a nonzero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Relativistic heavy ion collisions are the ideal experimental tool to explore the QCD phase diagram. Several results show that a very hot medium with a high energy density and partonic degrees of freedom is formed in these collisions, creating a new state of matter. Measurements of strange hadrons can bring important information about the bulk properties of such matter. The elliptic flow of strange hadrons such as phi, K(S)(0), Lambda, Xi and Omega shows that collectivity is developed at partonic level and at intermediate p(T) the quark coalescence is the dominant mechanism of hadronization. The nuclear modification factor is an another indicator of the presence of a very dense medium. The comparison between measurements of Au+Au and d+Au collisions, where only cold nuclear matter effects are expected, can shed more light on the bulk properties. In these proceedings, recent results from the STAR experiment on bulk matter properties are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nuclear matter calculations with realistic nucleon-nucleon potentials present a general scaling between the nucleon-nucleus binding energy, the corresponding saturation density, and the triton binding energy. The Thomas-Efimov three-body effect implies in correlations among low-energy few-body and many-body observables. It is also well known that, by varying the short-range repulsion, keeping the two-nucleon information (deuteron and scattering) fixed, the four-nucleon and three-nucleon binding energies lie on a very narrow band known as a Tjon line. By looking for a universal scaling function connecting the proper scales of the few-body system with those of the many-body system, we suggest that the general nucleus-nucleon scaling mechanism is a manifestation of a universal few-body effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effect of bound nucleon internal structure change on nuclear structure functions is investigated based on local quark-hadron duality. The bound nucleon structure functions calculated for charged-lepton and (anti)neutrino scattering are all enhanced in symmetric nuclear matter at large Bjorken-x (x greater than or similar to 0.85) relative to those in a free nucleon. This implies that a part of the enhancement observed in the nuclear structure function F-2 (in the resonance region) at large Bjorken-x (the EMC effect) is due to the effect of the bound nucleon internal structure change. However, the x dependence for the charged-lepton and (anti)neutrino scattering is different. The former (latter) is enhanced (quenched) in the region 0.8 less than or similar to x less than or similar to 0.9 (0.7 less than or similar to x less than or similar to 0.85) due to the difference of the contribution from axial vector forrn factor. Because of these differences charge symmetry breaking in parton distributions will be enhanced in nuclei. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We use the optimized linear δ expansion and functional methods to study vacuum contributions in nuclear matter up to the lowest non-trivial order which includes exchange terms. We show that well known results (MFT, RHA and HF) can be easily reproduced when appropriate limits are taken. Neglecting vacuum contributions we explicitly show that the δ expansion goes beyond the traditional loop approximation previously used to study two loop vacuum contributions in nuclear matter. We then evaluate and renormalize vacuum exchange contributions showing that they are numerically very large, as predicted by the ordinary loop approximation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we study the warm equation of state of asymmetric nuclear matter in the quark-meson coupling model which incorporates explicitly quark degrees of freedom, with quarks coupled to scalar, vector, and isovector mesons. Mechanical and chemical instabilities are discussed as a function of density and isospin asymmetry. The binodal section, essential in the study of the liquid-gas phase transition is also constructed and discussed. The main results for the equation of state are compared with two common parametrizations used in the nonlinear Walecka model and the differences are outlined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nuclear incoherent π 0 photoproduction cross section from 12C is evaluated at forward angles in the 4.0 to 6.0 GeV energy range using the multicollisional intranuclear cascade model MCMC. The model incorporates some improvements in comparison with previous versions associated with the momentum distribution (MD) for light nuclei - extracted from the available (e,e ′p) data - as well as the evaluation of the shadowing effects during the photo-nucleus interaction. The final results of the single and double differential cross sections at forward angles are very sensitive to the MD parameterizations due to the Pauli principle, which largely suppresses the cross sections for low momentum transfer. The attenuation of the nuclear cross section due to pion - nucleus final state interactions is approximately 40% (without nuclear shadowing), which is in nice agreement with the predictions from the Glauber model. The single and double π 0 differential cross sections are presented for possible applications for the interpretation of the inelastic background in the PrimEx experiment at the Jefferson Laboratory. © 2007 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We calculate mass shift of the J/Ψ meson in nuclear matter arising from the modification of DD, DD* and D*D* meson loop contributions to the J/Ψ self-energy. The estimate includes the in-medium D and D* meson masses consistently. The J/Ψ mass shift (scalar potential) calculated is negative (attractive), and is complementary to the attractive potential obtained from the QCD color van der Waals forces. Some results for the J/Ψ -nuclear bound state energies are also presented. © 2011 American Institute of Physics.