998 resultados para Norway
Resumo:
A sample of 10 Norway rats (Rattus norvegicus) was taken for DNA resistance testing from an agricultural site in Kent where applications of the anticoagulant rodenticide bromadiolone had been unsuccessful. All animals tested were homozygous for the single nucleotide VKORC1 polymorphism tyrosine139phenylalanine, or Y139F. This is a common resistance mutation found extensively in France and Belgium but not previously in the UK. Y139F confers a significant level of resistance to first-generation anticoagulants, such as chlorophacinone, and to the second-generation compound bromadiolone. Another compound widely used in the UK, difenacoum, is also thought to be partially resisted by rats which carry Y139F. A silent VKORC1 mutation was also found in all rats tested. The presence of a third important VKORC1 mutation which confers resistance to anticoagulant rodenticides in widespread use in the UK, the others being Y139C and L120Q, further threatens the ability of pest control practitioners to deliver effective rodent control.
Resumo:
We compared the quantity of wheat bait consumed by Norway rats (Rattus norvegicus) from: (i) wooden bait trays, made as safe as possible from non-target animals using materials available at trial sites, and (ii) three different, proprietary tamper-resistant rat bait boxes. A balanced Latin square experimental design was used to overcome operational biases that occur when baits of different types are applied simultaneously at the same sites. The consumption of bait from the four different types of bait placement differed significantly and accounted for more than 76% of the total variation. The amount of bait eaten by rats from the bait trays was approximately eight times greater than the quantity eaten from the tamper-resistant bait boxes. The three bait box designs appeared to deter bait consumption by rats to a similar extent. Tamper-resistant bait boxes are essential tools in the application of rodenticides in many circumstances but their use should not be mandatory when it is possible to make baits safe from non-target animals by other means.
Resumo:
Resistance baselines were obtained for the first generation anticoagulant rodenticides chlorophacinone and diphacinone using laboratory, caesarian-derived Norway rats (Rattus norvegicus) as the susceptible strain and the blood clotting response test method. The ED99 estimates for a quantal response were: chlorophacinone, males 0.86 mg kg−1, females 1.03 mg kg−1; diphacinone, males 1.26 mg kg−1, females 1.60 mg kg−1. The dose-response data also showed that chlorophacinone was significantly (p<0.0001) more potent than diphacinone for both male and female rats, and that male rats were more susceptible than females to both compounds (p<0.002). The ED99 doses were then given to groups of five male and five female rats of the Welsh and Hampshire warfarin-resistant strains. Twenty-four hours later, prothrombin times were slightly elevated in both strains but all the animals were classified as resistant to the two compounds, indicating cross-resistance from warfarin to diphacinone and chlorophacinone. When rats of the two resistant strains were fed for six consecutive days on baits containing either diphacinone or chlorophacinone, many animals survived, indicating that their resistance might enable them to survive treatments with these compounds in the field.
Resumo:
An increasing importance is assigned to the estimation and verification of carbon stocks in forests. Forestry practice has several long-established and reliable methods for the assessment of aboveground biomass; however we still miss accurate predictors of belowground biomass. A major windthrow event exposing the coarse root systems of Norway spruce trees allowed us to assess the effects of contrasting soil stone and water content on belowground allocation. Increasing stone content decreases root/shoot ratio, while soil waterlogging leads to an increase in this ratio. We constructed allometric relationships for belowground biomass prediction and were able to show that only soil waterlogging significantly impacts model parameters. We showed that diameter at breast height is a reliable predictor of belowground biomass and, once site-specific parameters have been developed, it is possible to accurately estimate belowground biomass in Norway spruce.
Resumo:
Allochthonous Norway spruce stands in the Kysucké Beskydy Mts. (north-western Slovakia) have been exposed to substantial acid deposition in the recent past and grow in acidified soil conditions with mean pH of about 4.0 in the topsoil. We selected 90 spruce trees representing 30 triples of different crown status: healthy, stressed and declining to assess the relationship between crown and fine root status. Sequential coring and in-growth bags were applied to each triplet to investigate fine root biomass and growth in the soil depths of 0-10 and 10-20 cm. Fine root quantity (biomass and necromass), turnover (production over standing stock), morphological features (specific root length, root tip density) and chemical properties (Ca:Al molar ratio) were compared among the abovementioned health status categories. Living fine root biomass decreased with increasing stress, while the ratio of living to dead biomass increased. Annual fine root production decreased and specific root length increased in stressed trees when compared to healthy or declining trees, a situation which may be related to the position of trees in the canopy (healthy and declining – dominant, stressed – co-dominant). The Ca:Al ratio decreased with increasing crown damage, indicating a decreased ability to filter out aluminium. In conclusion, fine root status appears to be linked to visible crown damage and can be used as a tree health indicator.
Resumo:
Biomass allocation to above- and belowground compartments in trees is thought to be affected by growth conditions. To assess the strength of such influences, we sampled six Norway spruce forest stands growing at higher altitudes. Within these stands, we randomly selected a total of 77 Norway spruce trees and measured volume and biomass of stem, above- and belowground stump and all roots over 0.5 cm diameter. A comparison of our observations with models parameterised for lower altitudes shows that models developed for specific conditions may be applicable to other locations. Using our observations, we developed biomass functions (BF) and biomass conversion and expansion factors (BCEF) linking belowground biomass to stem parameters. While both BF and BCEF are accurate in belowground biomass predictions, using BCEF appears more promising as such factors can be readily used with existing forest inventory data to obtain estimates of belowground biomass stock. As an example, we show how BF and BCEF developed for individual trees can be used to estimate belowground biomass at the stand level. In combination with existing aboveground models, our observations can be used to quantify total standing biomass of high altitude Norway spruce stands.
Resumo:
Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomassfunctions (BFs) and biomassexpansionfactors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older.
Resumo:
For the first time, it has been unequivocally shown that multiple-feed second-generation anticoagulant rodenticides were ineffective against a population of rats in N.W. Berkshire, UK because of an unusually high prevalence and high degree of resistance. Use of the non-anticoagulant rodenticide calciferol led to a substantial reduction in the population, although primary poisoning of small birds appeared to be greater than with anticoagulant baits. There was strong evidence that many of the surviving rats had developed an aversion towards calciferol-treated bait. A reduction in the degree of anticoagulant resistance in the population was evident after a period of 17 months without anticoagulant use. The long-term strategy to manage the resistant population should integrate non-anticoagulant and anticoagulant rodenticide use to take advantage of possible pleiotropic costs of resistance.
Resumo:
BACKGROUND: The single nucleotide polymorphism (SNP), and consequent amino acid exchange from tyrosine to cysteine at location 139 of the vkorc1 gene (i.e. tyrosine139cysteine or Y139C), is the most widespread anticoagulant resistance mutation in Norway rats (Rattus norvegicus Berk.) in Europe. Field trials were conducted to determine incidence of the Y139C SNP at two rat infested farms in Westphalia, Germany, and to estimate the practical efficacy against them of applications, using a pulsed baiting treatment regime, of a proprietary bait (KleratTM) containing 50 ppm brodifacoum. RESULTS: DNA analysis for the Y139C mutation showed that resistant rats were prevalent at the two farms, with an incidence of 80.0% and 78.6% respectively. Applications of brodifacoum bait achieved results of 99.2% and 100.0% control at the two farms, when measured by census baiting, although the treatment was somewhat prolonged at one site due to the abundance of attractive alternative food. CONCLUSION: The study showed that 50 ppm brodifacoum bait is fully effective against the Y139C SNP at the Münsterland focus and is likely to be so elsewhere in Europe where this mutation is found. The pulsed baiting regime reduced to relatively low levels the quantity of bait required to control these two substantial resistant Norway rat infestations. Previous studies had shown much larger quantities of bromadiolone and difenacoum baits used in ineffective treatments against Y139C resistant rats in the Münsterland. These results should be considered when making decisions about the use of anticoagulant against resistant Norway rats and their potential environmental impacts.
Resumo:
A rain shelter experiment was conducted in a 90-year-old Norway spruce stand, in the Kysucké Beskydy Mts (Slovakia). Three rain shelters were constructed in the stand to prevent the rainfall from reaching the soil and to reduce water availability in the rhizosphere. Fine root biomass and necromass were repeatedly measured throughout a growing season by soil coring. We established the quantities of fine root biomass (live) and necromass (dead) at soil depths of 0-5, 5-15, 15-25, and 25-35 cm. Significant differences in soil moisture contents between control and drought plots were found in the top 15 cm of soil after 20 weeks of rainfall manipulation (lasting from early June to late October). Our observations show that even relatively light drought decreased total fine root biomass from 272.0 to 242.8 g m-2 and increased the amount of necromass from 79.2 to 101.2 g m-2 in the top 35 cm of soil. Very fine roots, i.e. those with diameter up to 1 mm, were more affected than total fine roots defined as 0-2 mm. The effect of reduced water availability was depth-specific, as a result we observed a modification of vertical distribution of fine roots. More roots in drought treatment were produced in the wetter soil horizons at 25-35 cm depth than at the surface. We conclude that fine and very fine root systems of Norway spruce have the capacity to re-allocate resources to roots at different depths in response to environmental signals, resulting in changes in necromass to biomass ratio.
Resumo:
An alteration of species composition in temperate forests – both managed and natural - is one of the expected effects of environmental change. Present forest tree species ranges will be altered by changing environmental conditions. By a combination of continuous and destructive sampling, we compared biomass stocks and annual NPP in naturally regenerated stands of Norway spruce and European beech. We purposely selected a site where future environmental conditions are predicted to favour beech over presently dominant spruce. We found no difference in overall productivity, but biomass allocation differed significantly between the two species. Beech allocated more assimilates to stem and roots than spruce. There was no significant difference between the species in NPP of the fast turnover biomass pool comprising foliage and fine roots. Maximum height growth occurred about a month earlier than in spruce, potentially changing the timing of carbon (C) flow into the soil pools. We show that the replacement of spruce by beech will result in changes in forest biomass allocation and in alterations of belowground C cycle. Such changes will affect forest ecosystem function by modifying the magnitude and timing of certain C fluxes, but also by potentially changing the species composition of forest biota dependent on them.
Resumo:
Earth hummocks (also termed pounus or thúfur) are a common form of periglacial non-sorted patterned ground. The study objectives were to determine the morphology, distribution and development on slopes of earth hummocks in north-east Okstindan, Norway, an area with many hummocks but few documented accounts. The methodology involved detailed geomorphological mapping and precise measurement with a profileometer. The internal structure of the hummocks was investigated through excavations and sediment sample analyses. Fourteen sites with well-developed earth hummocks (accounting for over 650 individual hummock forms) were investigated. The sites have an average altitude of 750 m and occur on slopes with an average gradient of 7°. The hummock heights are in the range 0.11–0.52 m and their diameters 0.7–1.5 m, although coalescent forms are up to 5 m in length. The hummock morphology is characterised by a variable plan form, asymmetry with respect to upslope and downslope forms, downslope elongation, coalescence, and superimposed microtopography. The hummocks’ distribution appeared to have been controlled by the existence of a frost-susceptible ‘host’ sediment, but moisture availability and topographic position played a role. The authors conclude that differential frost heave and vegetation cover stability are critical for the hummocks’ longevity in the studied landscape.