930 resultados para Nonlinear static analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a unified model for large signal and small signal non-quasi-static analysis of long channel symmetric double gate MOSFET. The model is physics based and relies only on the very basic approximation needed for a charge-based model. It is based on the EKV formalism Enz C, Vittoz EA. Charge based MOS transistor modeling. Wiley; 2006] and is valid in all regions of operation and thus suitable for RF circuit design. Proposed model is verified with professional numerical device simulator and excellent agreement is found. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The seismic slope stability analysis of the right abutment of a railway bridge proposed at about 350 m above the ground level, crossing a river and connecting two huge hillocks in the Himalayas, India, is presented in this paper. The rock slopes are composed of highly jointed rock mass and the joint spacing and orientation are varying at different locations. Seismic slope stability analysis of the slope under consideration is carried out using both pseudo-static approach and time response approach as the site is located in seismic zone V as per the earth quake zonation maps of India. Stability of the slope is studied numerically using program FLAC. The results obtained from the pseudo-static analysis are presented in the form of Factor of Safety (FOS) and the results obtained from the time response analysis of the slope are presented in terms of horizontal and vertical displacements along the slope. The results obtained from both the analyses confirmed the global stability of the slope as the FOS in case of pseudo-static analysis is above 1.0 and the displacements observed in case of time response analysis are within the permissible limits. This paper also presents the results obtained from the parametric analysis performed in the case of time response analysis in order to understand the effect of individual parameters on the overall stability of the slope.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a compact model for small signal non quasi static analysis of long channel symmetric double gate MOSFET The model is based on the EKV formalism and is valid in all regions of operation and thus suitable for RF circuit design Proposed model is verified with professional numerical device simulator and excellent agreement is found well beyond the cut-off frequency

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a novel formulation of the points-to analysis as a system of linear equations. With this, the efficiency of the points-to analysis can be significantly improved by leveraging the advances in solution procedures for solving the systems of linear equations. However, such a formulation is non-trivial and becomes challenging due to various facts, namely, multiple pointer indirections, address-of operators and multiple assignments to the same variable. Further, the problem is exacerbated by the need to keep the transformed equations linear. Despite this, we successfully model all the pointer operations. We propose a novel inclusion-based context-sensitive points-to analysis algorithm based on prime factorization, which can model all the pointer operations. Experimental evaluation on SPEC 2000 benchmarks and two large open source programs reveals that our approach is competitive to the state-of-the-art algorithms. With an average memory requirement of mere 21MB, our context-sensitive points-to analysis algorithm analyzes each benchmark in 55 seconds on an average.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a new abstract domain for static analysis of executable code. Concrete states are abstracted using circular linear progressions (CLPs). CLPs model computations using a finite word length as is seen in any real life processor. The finite abstraction allows handling overflow scenarios in a natural and straight-forward manner. Abstract transfer functions have been defined for a wide range of operations which makes this domain easily applicable for analyzing code for a wide range of ISAs. CLPs combine the scalability of interval domains with the discreteness of linear congruence domains. We also present a novel, lightweight method to track linear equality relations between static objects that is used by the analysis to improve precision. The analysis is efficient, the total space and time overhead being quadratic in the number of static objects being tracked.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowledge about program worst case execution time (WCET) is essential in validating real-time systems and helps in effective scheduling. One popular approach used in industry is to measure execution time of program components on the target architecture and combine them using static analysis of the program. Measurements need to be taken in the least intrusive way in order to avoid affecting accuracy of estimated WCET. Several programs exhibit phase behavior, wherein program dynamic execution is observed to be composed of phases. Each phase being distinct from the other, exhibits homogeneous behavior with respect to cycles per instruction (CPI), data cache misses etc. In this paper, we show that phase behavior has important implications on timing analysis. We make use of the homogeneity of a phase to reduce instrumentation overhead at the same time ensuring that accuracy of WCET is not largely affected. We propose a model for estimating WCET using static worst case instruction counts of individual phases and a function of measured average CPI. We describe a WCET analyzer built on this model which targets two different architectures. The WCET analyzer is observed to give safe estimates for most benchmarks considered in this paper. The tightness of the WCET estimates are observed to be improved for most benchmarks compared to Chronos, a well known static WCET analyzer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Static analysis (aka offline analysis) of a model of an IP network is useful for understanding, debugging, and verifying packet flow properties of the network. Data-flow analysis is a method that has typically been applied to static analysis of programs. We propose a new, data-flow based approach for static analysis of packet flows in networks. We also investigate an application of our analysis to the problem of inferring a high-level policy from the network, which has been addressed in the past only for a single router.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

How do we assess the capability of a compliant mechanism of given topology and shape? The kinetoelastostatic maps proposed in this paper help answer this question. These maps are drawn in 2D using two non-dimensional quantities, one capturing the nonlinear static response and the other the geometry, material, and applied forces. Geometrically nonlinear finite element analysis is used to create the maps for compliant mechanisms consisting of slender beams. In addition to the topology and shape, the overall proportions and the proportions of the cross-sections of the beam segments are kept fixed for a map. The finite region of the map is parameterized using a non-dimensional quantity defined as the slenderness ratio. The shape and size of the map and the parameterized curves inside it indicate the complete kinetoelastostatic capability of the corresponding compliant mechanism of given topology, shape, and fixed proportions. Static responses considered in this paper include input/output displacement, geometric amplification, mechanical advantage, maximum stress, etc. The maps can be used to compare mechanisms, to choose a suitable mechanism for an application, or re-design as may be needed. The usefulness of the non-dimensional maps is presented with multiple applications of different variety. Non-dimensional portrayal of snap-through mechanisms is one such example. The effect of the shape of the cross-section of the beam segments and the role of different segments in the mechanism as well as extension to 3D compliant mechanisms, the cases of multiple inputs and outputs, and moment loads are also explained. The effects of disproportionate changes on the maps are also analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the stability analysis of functionally graded plate integrated with piezoelectric actuator and sensor at the top and bottom face, subjected to electrical and mechanical loading. The finite element formulation is based on first order and higher order shear deformation theory, degenerated shell element, von-Karman hypothesis and piezoelectric effect. The equation for static analysis is derived by using the minimum energy principle and solutions for critical buckling load is obtained by solving eigenvalue problem. The material properties of the functionally graded plate are assumed to be graded along the thickness direction according to simple power law function. Two types of boundary conditions are used, such as SSSS (simply supported) and CSCS (simply supported along two opposite side perpendicular to the direction of compression and clamped along the other two sides). Sensor voltage is calculated using present analysis for various power law indices and FG (functionally graded) material gradations. The stability analysis of piezoelectric FG plate is carried out to present the effects of power law index, material variations, applied mechanical pressure and piezo effect on buckling and stability characteristics of FG plate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the past many different methodologies have been devised to support software development and different sets of methodologies have been developed to support the analysis of software artefacts. We have identified this mismatch as one of the causes of the poor reliability of embedded systems software. The issue with software development styles is that they are ``analysis-agnostic.'' They do not try to structure the code in a way that lends itself to analysis. The analysis is usually applied post-mortem after the software was developed and it requires a large amount of effort. The issue with software analysis methodologies is that they do not exploit available information about the system being analyzed.

In this thesis we address the above issues by developing a new methodology, called "analysis-aware" design, that links software development styles with the capabilities of analysis tools. This methodology forms the basis of a framework for interactive software development. The framework consists of an executable specification language and a set of analysis tools based on static analysis, testing, and model checking. The language enforces an analysis-friendly code structure and offers primitives that allow users to implement their own testers and model checkers directly in the language. We introduce a new approach to static analysis that takes advantage of the capabilities of a rule-based engine. We have applied the analysis-aware methodology to the development of a smart home application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mobile malware has been growing in scale and complexity spurred by the unabated uptake of smartphones worldwide. Android is fast becoming the most popular mobile platform resulting in sharp increase in malware targeting the platform. Additionally, Android malware is evolving rapidly to evade detection by traditional signature-based scanning. Despite current detection measures in place, timely discovery of new malware is still a critical issue. This calls for novel approaches to mitigate the growing threat of zero-day Android malware. Hence, the authors develop and analyse proactive machine-learning approaches based on Bayesian classification aimed at uncovering unknown Android malware via static analysis. The study, which is based on a large malware sample set of majority of the existing families, demonstrates detection capabilities with high accuracy. Empirical results and comparative analysis are presented offering useful insight towards development of effective static-analytic Bayesian classification-based solutions for detecting unknown Android malware.