965 resultados para Nonlinear optimization solver
Resumo:
We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.
Resumo:
Im operativen Betrieb einer Stückgutspeditionsanlage entscheidet der Betriebslenker bzw. der Disponent in einem ersten Schritt darüber, an welche Tore die Fahrzeuge zur Be- und Entladung andocken sollen. Darüber hinaus muss er für jede Tour ein Zeitfenster ausweisen innerhalb dessen sie das jeweilige Tor belegt. Durch die örtliche und zeitliche Fahrzeug-Tor-Zuordnung wird der für den innerbetrieblichen Umschlagprozess erforderliche Ressourcenaufwand in Form von zu fahrenden Wegstrecken oder aber Gabelstaplerstunden bestimmt. Ein Ziel der Planungsaufgabe ist somit, die Zuordnung der Fahrzeuge an die Tore so vorzunehmen, dass dabei minimale innerbetriebliche Wegstrecken entstehen. Dies führt zu einer minimalen Anzahl an benötigten Umschlagmittelressourcen. Darüber hinaus kann es aber auch zweckmäßig sein, die Fahrzeuge möglichst früh an die Tore anzudocken. Jede Tour verfügt über einen individuellen Fahrplan, der Auskunft über den Ankunftszeitpunkt sowie den Abfahrtszeitpunkt der jeweiligen Tour von der Anlage gibt. Nur innerhalb dieses Zeitfensters darf der Disponent die Tour einem der Tore zuweisen. Geschieht die Zuweisung nicht sofort nach Ankunft in der Anlage, so muss das Fahrzeug auf einer Parkfläche warten. Eine Minimierung der Wartezeiten ist wünschenswert, damit das Gelände der Anlage möglichst nicht durch zuviele Fahrzeuge gleichzeitig belastet wird. Es kann vor allem aber auch im Hinblick auf das Reservieren der Tore für zeitkritische Touren sinnvoll sein, Fahrzeuge möglichst früh abzufertigen. Am Lehrstuhl Verkehrssysteme und -logistik (VSL) der Universität Dortmund wurde die Entscheidungssituation im Rahmen eines Forschungsprojekts bei der Stiftung Industrieforschung in Anlehnung an ein zeitdiskretes Mehrgüterflussproblem mit unsplittable flow Bedingungen modelliert. Die beiden Zielsetzungen wurden dabei in einer eindimensionalen Zielfunktion integriert. Das resultierende Mixed Integer Linear Programm (MILP) wurde programmiert und für mittlere Szenarien durch Eingabe in den Optimization Solver CPlex mit dem dort implementierten exakten Branch-and-Cut Verfahren gelöst. Parallel wurde im Rahmen einer Kooperation zwischen dem Lehrstuhl VSL und dem Unternehmen hafa Docking Systems, einem der weltweit führenden Tor und Rampenhersteller, für die gleiche Planungsaufgabe ein heuristisches Scheduling Verfahren sowie ein Dispositionsleitstand namens LoadDock Navigation entwickelt. Der Dispositionsleitstand dient der optimalen Steuerung der Torbelegungen in logistischen Anlagen. In dem Leitstand wird planerische Intelligenz in Form des heuristischen Schedulingverfahrens, technische Neuerungen in der Rampentechnik in Form von Sensoren und das Expertenwissen des Disponenten in einem Tool verbunden. Das mathematische Modell sowie der Prototyp mit der integrierten Heuristik werden im Rahmen dieses Artikels vorgestellt.
Resumo:
Este trabalho apresenta um método de estimativa de torque do joelho baseado em sinais eletromiográficos (EMG) durante terapia de reabilitação robótica. Os EMGs, adquiridos de cinco músculos envolvidos no movimento de flexão e extensão do joelho, são processados para encontrar as ativações musculares. Em seguida, mediante um modelo simples de contração muscular, são calculadas as forças e, usando a geometria da articulação, o torque do joelho. As funções de ativação e contração musculares possuem parâmetros limitados que devem ser calibrados para cada usuário, sendo o ajuste feito mediante a minimização do erro entre o torque estimado e o torque medido na articulação usando a dinâmica inversa. São comparados dois métodos iterativos para funções não-lineares como técnicas de otimização restrita para a calibração dos parâmetros: Gradiente Descendente e Quasi-Newton. O processamento de sinais, calibração de parâmetros e cálculo de torque estimado foram desenvolvidos no software MATLAB®; o cálculo de torque medido foi feito no software OpenSim com sua ferramenta de dinâmica inversa.
Resumo:
O presente estudo considera a aplicação do modelo SISAGUA de simulação matemática e de otimização para a operação de sistemas de reservatórios integrados em sistemas complexos para o abastecimento de água. O SISAGUA utiliza a programação não linear inteira mista (PNLIM) com os objetivos de evitar ou minimizar racionamentos, equilibrar a distribuição dos armazenamentos em sistemas com múltiplos reservatórios e minimizar os custos de operação. A metodologia de otimização foi aplicada para o sistema produtor de água da Região Metropolitana de São Paulo (RMSP), que enfrenta a crise hídrica diante de um cenário de estiagem em 2013-2015, o pior na série histórica dos últimos 85 anos. Trata-se de uma região com 20,4 milhões de habitantes. O sistema é formado por oito sistemas produtores parcialmente integrados e operados pela Sabesp (Companhia de Saneamento do Estado de São Paulo). A RMSP é uma região com alta densidade demográfica, localizada na Bacia Hidrográfica do Alto Tietê e caracterizada pela baixa disponibilidade hídrica per capita. Foi abordada a possibilidade de considerar a evaporação durante as simulações, e a aplicação de uma regra de racionamento contínua nos reservatórios, que transforma a formulação do problema em programação não linear (PNL). A evaporação se mostrou pouco representativa em relação a vazão de atendimento à demanda, com cerca de 1% da vazão. Se por um lado uma vazão desta magnitude pode contribuir em um cenário crítico, por outro essa ordem de grandeza pode ser comparada às incertezas de medições ou previsões de afluências. O teste de sensibilidade das diferentes taxas de racionamento em função do volume armazenado permite analisar o tempo de resposta de cada sistema. A variação do tempo de recuperação, porém, não se mostrou muito significativo.
Resumo:
Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
The use of the Design by Analysis (DBA) route is a modern trend in pressure vessel and piping international codes in mechanical engineering. However, to apply the DBA to structures under variable mechanical and thermal loads, it is necessary to assure that the plastic collapse modes, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. The tool available to achieve this target is the shakedown theory. Unfortunately, the practical numerical applications of the shakedown theory result in very large nonlinear optimization problems with nonlinear constraints. Precise, robust and efficient algorithms and finite elements to solve this problem in finite dimension has been a more recent achievements. However, to solve real problems in an industrial level, it is necessary also to consider more realistic material properties as well as to accomplish 3D analysis. Limited kinematic hardening, is a typical property of the usual steels and it should be considered in realistic applications. In this paper, a new finite element with internal thermodynamical variables to model kinematic hardening materials is developed and tested. This element is a mixed ten nodes tetrahedron and through an appropriate change of variables is possible to embed it in a shakedown analysis software developed by Zouain and co-workers for elastic ideally-plastic materials, and then use it to perform 3D shakedown analysis in cases with limited kinematic hardening materials
Resumo:
The use of the Design by Analysis concept is a trend in modern pressure vessel and piping calculations. DBA flexibility allow us to deal with unexpected configurations detected at in-service inspections. It is also important, in life extension calculations, when deviations of the original standard hypotesis adopted initially in Design by Formula, can happen. To apply the DBA to structures under variable mechanic and thermal loads, it is necessary that, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. These are two basic failure modes considered by ASME or European Standards in DBA. The shakedown theory is the tool available to achieve this goal. In order to apply it, is necessary only the range of the variable loads and the material properties. Precise, robust and efficient algorithms to solve the very large nonlinear optimization problems generated in numerical applications of the shakedown theory is a recent achievement. Zouain and co-workers developed one of these algorithms for elastic ideally-plastic materials. But, it is necessary to consider more realistic material properties in real practical applications. This paper shows an enhancement of this algorithm to dealing with limited kinematic hardening, a typical property of the usual steels. This is done using internal thermodynamic variables. A discrete algorithm is obtained using a plane stress, mixed finite element, with internal variable. An example, a beam encased in an end, under constant axial force and variable moment is presented to show the importance of considering the limited kinematic hardening in a shakedown analysis.
Resumo:
In design or safety assessment of mechanical structures, the use of the Design by Analysis (DBA) route is a modern trend. However, for making possible to apply DBA to structures under variable loads, two basic failure modes considered by ASME or European Standards must be precluded. Those modes are the alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case). Shakedown theory is a tool that permit us to assure that those kinds of failures will be avoided. However, in practical applications, very large nonlinear optimization problems are generated. Due to this facts, only in recent years have been possible to obtain algorithms sufficiently accurate, robust and efficient, for dealing with this class of problems. In this paper, one of these shakedown algorithms, developed for dealing with elastic ideally-plastic structures, is enhanced to include limited kinematic hardening, a more realistic material behavior. This is done in the continuous model by using internal thermodynamic variables. A corresponding discrete model is obtained using an axisymmetric mixed finite element with an internal variable. A thick wall sphere, under variable thermal and pressure loads, is used in an example to show the importance of considering the limited kinematic hardening in the shakedown calculations
Resumo:
The protein lysate array is an emerging technology for quantifying the protein concentration ratios in multiple biological samples. It is gaining popularity, and has the potential to answer questions about post-translational modifications and protein pathway relationships. Statistical inference for a parametric quantification procedure has been inadequately addressed in the literature, mainly due to two challenges: the increasing dimension of the parameter space and the need to account for dependence in the data. Each chapter of this thesis addresses one of these issues. In Chapter 1, an introduction to the protein lysate array quantification is presented, followed by the motivations and goals for this thesis work. In Chapter 2, we develop a multi-step procedure for the Sigmoidal models, ensuring consistent estimation of the concentration level with full asymptotic efficiency. The results obtained in this chapter justify inferential procedures based on large-sample approximations. Simulation studies and real data analysis are used to illustrate the performance of the proposed method in finite-samples. The multi-step procedure is simpler in both theory and computation than the single-step least squares method that has been used in current practice. In Chapter 3, we introduce a new model to account for the dependence structure of the errors by a nonlinear mixed effects model. We consider a method to approximate the maximum likelihood estimator of all the parameters. Using the simulation studies on various error structures, we show that for data with non-i.i.d. errors the proposed method leads to more accurate estimates and better confidence intervals than the existing single-step least squares method.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
Uma das áreas de aplicação da optimização é a Engenharia Biomédica, pois a optimização intervém no estudo de próteses e implantes, na reconstrução tomográfica, na mecânica experimental, entre outras aplicações. Este projecto tem como principal objectivo a criação de um novo programa de marcação de exames médicos a fim de minimizar o tempo de espera na realização dos mesmos. É efectuada uma breve referência à teoria da optimização bem como à optimização linear e não-linear, aos algoritmos genéticos, que foram usados para a realização deste trabalho. É também apresentado um caso de estudo, formulado como um problema de optimização não linear com restrições. Com este estudo verificou-se que o escalonamento de exames médicos nunca poderá ser optimizado a 100por cento devido à quantidade de variáveis existentes, sendo que algumas delas não são passíveis de prever com antecedência.
Resumo:
The optimal reactive dispatch problem is a nonlinear programming problem containing continuous and discrete control variables. Owing to the difficulty caused by discrete variables, this problem is usually solved assuming all variables as continuous variables, therefore the original discrete variables are rounded off to the closest discrete value. This approach may provide solutions far from optimal or even unfeasible solutions. This paper presents an efficient handling of discrete variables by penalty function so that the problem becomes continuous and differentiable. Simulations with the IEEE test systems were performed showing the efficiency of the proposed approach. © 1969-2012 IEEE.