889 resultados para Non-linear behaviour
Resumo:
Euler–Bernoulli beams are distributed parameter systems that are governed by a non-linear partial differential equation (PDE) of motion. This paper presents a vibration control approach for such beams that directly utilizes the non-linear PDE of motion, and hence, it is free from approximation errors (such as model reduction, linearization etc.). Two state feedback controllers are presented based on a newly developed optimal dynamic inversion technique which leads to closed-form solutions for the control variable. In one formulation a continuous controller structure is assumed in the spatial domain, whereas in the other approach it is assumed that the control force is applied through a finite number of discrete actuators located at predefined discrete locations in the spatial domain. An implicit finite difference technique with unconditional stability has been used to solve the PDE with control actions. Numerical simulation studies show that the beam vibration can effectively be decreased using either of the two formulations.
Resumo:
In this paper the method of ultraspherical polynomial approximation is applied to study the steady-state response in forced oscillations of a third-order non-linear system. The non-linear function is expanded in ultraspherical polynomials and the expansion is restricted to the linear term. The equation for the response curve is obtained by using the linearized equation and the results are presented graphically. The agreement between the approximate solution and the analog computer solution is satisfactory. The problem of stability is not dealt with in this paper.
Resumo:
For the non-linear bending of cantilever beams of variable cross-section, the effect of large deformations, but with linear elasticity, is considered. The governing integral equation is solved by a numerical iterative procedure. Results for some typical cases are obtained and compared with some of those available in the literature.
Resumo:
This paper deals with an approximate method of analysis of non-linear, non-conservative systems of two degrees of freedom. The approximate equations for amplitude and phase are obtained by a generalized averaging technique based on the ultraspherical polynomial approximation. The method is illustrated by an example of a spring-mass-damper system.
Resumo:
A simple generalized technique for realizing a non-linear digital to analogue converter (N-DAC), based on the principles of ' segment of equal digital interval ' is described. The simplicity of the proposed technique is demonstrated by realizing an N-DAC having a square law transfer function.
Resumo:
In this paper the response of a gyrostabilized platform subjected to a transient torque has been analyzed by deliberately introducing non-linearity into the command of the servomotor. The resulting third-order non-linear differential equation has been solved by using a transformation technique involving the displacement variable. The condition under which platform oscillations may grow with time or die with time are important from the point of view of platform stabilization. The effect of deliberate addition of non-linearity with a view to achieving the ideal response—that is, to bring the platform back to its equilibrium position with as few oscillations as possible—has been investigated. The conditions under which instability may set in on account of the small transient input and small non-linearity has also been discussed. The analysis is illustrated by means of a numerical example. The results of analysis are compared with numerical solutions obtained on a digital computer.
Resumo:
A method is presented for obtaining, approximately, the response covariance and probability distribution of a non-linear oscillator under a Gaussian excitation. The method has similarities with the hierarchy closure and the equivalent linearization approaches, but is different. A Gaussianization technique is used to arrive at the output autocorrelation and the input-output cross-correlation. This along with an energy equivalence criterion is used to estimate the response distribution function. The method is applicable in both the transient and steady state response analysis under either stationary or non-stationary excitations. Good comparison has been observed between the predicted and the exact steady state probability distribution of a Duffing oscillator under a white noise input.
Resumo:
In this study, the Krylov-Bogoliubov-Mitropolskii-Popov asymptotic method is used to determine the transient response of third-order non-linear systems. Instead of averaging the non-linear functions over a cycle, they are expanded in ultraspherical polynomials and the constant term is retained. The resulting equations are solved to obtain the approximate solution. A numerical example is considered and the approximate solution is compared with the digital solution. The results show that there is good agreement between the two values.
Resumo:
In this paper, the transient response of a third-order non-linear system is obtained by first reducing the given third-order equation to three first-order equations by applying the method of variation of parameters. On the assumption that the variations of amplitude and phase are small, the functions are expanded in ultraspherical polynomials. The expansion is restricted to the constant term. The resulting equations are solved to obtain the response of the given third-order system. A numerical example is considered to illustrate the method. The results show that the agreement between the approximate and digital solution is good thus vindicating the approximation.
Resumo:
The scope of the differential transformation technique, developed earlier for the study of non-linear, time invariant systems, has been extended to the domain of time-varying systems by modifications to the differential transformation laws proposed therein. Equivalence of a class of second-order, non-linear, non-autonomous systems with a linear autonomous model of second order is established through these transformation laws. The feasibility of application of this technique in obtaining the response of such non-linear time-varying systems is discussed.
Resumo:
This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.
Resumo:
Large amplitude oscillations of cantilevered beams of variable cross-section, with concentrated masses along the span, are studied in this paper. The governing non-linear ordinary differential equation is solved by an averaging technique to obtain approximate solutions. Stability boundaries of the response are also investigated.
Resumo:
The problem of decoupling a class of non-linear two degrees of freedom systems is studied. The coupled non-linear differential equations of motion of the system are shown to be equivalent to a pair of uncoupled equations. This equivalence is established through transformation techniques involving the transformation of both the dependent and independent variables. The sufficient conditions on the form of the non-linearity, for the case wherein the transformed equations are linear, are presented. Several particular cases of interest are also illustrated.
Resumo:
The possible equivalence of second-order non-linear systems having quadratic and cubic damping with third-order linear systems is studied in this paper. It is shown that this equivalence can be established through transformation techniques under certain constraints on the form of the non-linearity of the given system.
Application of Laplace transform technique to the solution of certain third-order non-linear systems
Resumo:
A number of papers have appeared on the application of operational methods and in particular the Laplace transform to problems concerning non-linear systems of one kind or other. This, however, has met with only partial success in solving a class of non-linear problems as each approach has some limitations and drawbacks. In this study the approach of Baycura has been extended to certain third-order non-linear systems subjected to non-periodic excitations, as this approximate method combines the advantages of engineering accuracy with ease of application to such problems. Under non-periodic excitations the method provides a procedure for estimating quickly the maximum response amplitude, which is important from the point of view of a designer. Limitations of such a procedure are brought out and the method is illustrated by an example taken from a physical situation.