904 resultados para Non-isothermal method
Resumo:
Increasing attention is being paid to the possible development of non-invasive tests for the assessment of the quality of Fruits. We propose a novel non-destructive method for the measurement of the internal optical properties of fruits and vegetables by means of lime-resolved reflectance spectroscopy in the visible and NIR range. A Fully automated instrumentation for time-resolved reflectance measurements was developed. It is based on mode-locked laser sources and electronics for time-correlated single photon counting, and provides a time-resolution of 120-160 ps. The system was used to probe the optical properties of several species and varieties of Fruits and vegetables in the red and NIR range (650-1000 nm). In most Fruits, the absorption line shape is dominated by the absorption peak of water, centred around 970 nm. Generally, the absorption spectra also show the spectral features typical of chlorophyll, with maximum at 675 nm. In particular, for what concerns apples, variations in peak intensity are observed depending on the variety, the degree of ripeness as well as the position on the apple. For all the species and varieties considered, the transport scattering coefficient decreases progressively upon increasing the wavelength.
Resumo:
Understanding arterial distensibility has shown to be important in the pathogenesis of cardiovascular abnormalities like hypertension. It is also known that arterial pulse wave velocity (PWV) is a measure of the elasticity or stiffness of peripheral arterial blood vessels. However, it generally requires complex instrumentations to have an accurate measurement and not suited for continual monitoring. In this paper, it describes a simple and non-intrusive method to detect the cardiovascular pulse from a human wrist above the radial artery and a fingertip. The main components of this proposed method are a piezoelectric transducer and a photo-plethysmography circuitry. 5 healthy adults (4 male) with age ranging from 25 to 38 years were recruited. The timing consistency of the detected pulsations is first evaluated and compared to that obtained from a commercial electrocardiogram. Furthermore, the derived PWV is then assessed by the predicted values attained from regression equations of two previous similar studies. The results show good correlations (p < 0.05) and similarities for the former and latter respectively. The simplicity and non-invasive nature of the proposed method can be attractive for even younger or badly disturbed patients. Moreover, it can be used for prolonged monitoring for the comfort of the patients.
Resumo:
This thesis presents an effective methodology for the generation of a simulation which can be used to increase the understanding of viscous fluid processing equipment and aid in their development, design and optimisation. The Hampden RAPRA Torque Rheometer internal batch twin rotor mixer has been simulated with a view to establishing model accuracies, limitations, practicalities and uses. As this research progressed, via the analyses several 'snap-shot' analysis of several rotor configurations using the commercial code Polyflow, it was evident that the model was of some worth and its predictions are in good agreement with the validation experiments, however, several major restrictions were identified. These included poor element form, high man-hour requirements for the construction of each geometry and the absence of the transient term in these models. All, or at least some, of these limitations apply to the numerous attempts to model internal mixes by other researchers and it was clear that there was no generally accepted methodology to provide a practical three-dimensional model which has been adequately validated. This research, unlike others, presents a full complex three-dimensional, transient, non-isothermal, generalised non-Newtonian simulation with wall slip which overcomes these limitations using unmatched ridding and sliding mesh technology adapted from CFX codes. This method yields good element form and, since only one geometry has to be constructed to represent the entire rotor cycle, is extremely beneficial for detailed flow field analysis when used in conjunction with user defined programmes and automatic geometry parameterisation (AGP), and improves accuracy for investigating equipment design and operation conditions. Model validation has been identified as an area which has been neglected by other researchers in this field, especially for time dependent geometries, and has been rigorously pursued in terms of qualitative and quantitative velocity vector analysis of the isothermal, full fill mixing of generalised non-Newtonian fluids, as well as torque comparison, with a relatively high degree of success. This indicates that CFD models of this type can be accurate and perhaps have not been validated to this extent previously because of the inherent difficulties arising from most real processes.
Resumo:
Purpose-To develop a non-invasive method for quantification of blood and pigment distributions across the posterior pole of the fundus from multispectral images using a computer-generated reflectance model of the fundus. Methods - A computer model was developed to simulate light interaction with the fundus at different wavelengths. The distribution of macular pigment (MP) and retinal haemoglobins in the fundus was obtained by comparing the model predictions with multispectral image data at each pixel. Fundus images were acquired from 16 healthy subjects from various ethnic backgrounds and parametric maps showing the distribution of MP and of retinal haemoglobins throughout the posterior pole were computed. Results - The relative distributions of MP and retinal haemoglobins in the subjects were successfully derived from multispectral images acquired at wavelengths 507, 525, 552, 585, 596, and 611?nm, providing certain conditions were met and eye movement between exposures was minimal. Recovery of other fundus pigments was not feasible and further development of the imaging technique and refinement of the software are necessary to understand the full potential of multispectral retinal image analysis. Conclusion - The distributions of MP and retinal haemoglobins obtained in this preliminary investigation are in good agreement with published data on normal subjects. The ongoing development of the imaging system should allow for absolute parameter values to be computed. A further study will investigate subjects with known pathologies to determine the effectiveness of the method as a screening and diagnostic tool.
Resumo:
The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.
Resumo:
The trioxsalen (Tri) is a low-dose drug used in the treatment of psoriasis and other skin diseases. The aim of the study was applying the thermal analysis and complementary techniques for characterization, evaluation of the trioxsalen stability and components of manipulated pharmaceutical formulations. The thermal behavior of the Tri by TG/DTG-DTA in dynamic atmosphere of synthetic air and nitrogen showed the same profile with a melting peak followed by a volatilization-related event. From the curves TG / DTG is observed a single stage of mass loss. By heating the drug in the stove at temperatures of 80, 240 and 260 °C, it had no change in chemical structure through the techniques of XRD, HPLC, MIR, OM and SEM. From the non-isothermal and isothermal TG kinetic studies was possible to calculate the activation energy and reaction order for the Tri. The drug showed good thermal stability. Studies on drug-excipient compatibility showed interaction of trissoralen with sodium lauryl sulfate 1:1. There was no interaction with aerosol, pregelatinized starch, sodium starch glycolate, cellulose, croscarmellose sodium, magnesium stearate, lactose and mannitol.The characterization of three trioxsalen formulations at concentrations of 2.5, 5, 7.5, 10, 12.5 and 15 mg was performed by DSC, TG / DTG, XRD, NIR and MIR. The PCA classification method based on spectral data from the NIR and MIR of trissoralen formulations allows successful differentiation into three groups. The formulation 3 was the one that best showed analytical profile with the following composition of aerosil excipients, pre-gelatinized starch and cellulose. The activation energy of the volatilization process of the drug was determined in binary mixtures and formulation 3 through fitting and isoconversional methods. The binary mixture with sodium starch glycolate and lactose showed differences in kinetic parameters compared to the drug isolated. The thermoanalytical techniques (DSC and TG / DTG) were shown to be promising methodologies for quantifying trioxsalen obtained by the linearity, selectivity, no use solvents, without sample preparation, speed and practicality.
Resumo:
BACKGROUND: Moderate-to-vigorous physical activity (MVPA) is an important determinant of children’s physical health, and is commonly measured using accelerometers. A major limitation of accelerometers is non-wear time, which is the time the participant did not wear their device. Given that non-wear time is traditionally discarded from the dataset prior to estimating MVPA, final estimates of MVPA may be biased. Therefore, alternate approaches should be explored. OBJECTIVES: The objectives of this thesis were to 1) develop and describe an imputation approach that uses the socio-demographic, time, health, and behavioural data from participants to replace non-wear time accelerometer data, 2) determine the extent to which imputation of non-wear time data influences estimates of MVPA, and 3) determine if imputation of non-wear time data influences the associations between MVPA, body mass index (BMI), and systolic blood pressure (SBP). METHODS: Seven days of accelerometer data were collected using Actical accelerometers from 332 children aged 10-13. Three methods for handling missing accelerometer data were compared: 1) the “non-imputed” method wherein non-wear time was deleted from the dataset, 2) imputation dataset I, wherein the imputation of MVPA during non-wear time was based upon socio-demographic factors of the participant (e.g., age), health information (e.g., BMI), and time characteristics of the non-wear period (e.g., season), and 3) imputation dataset II wherein the imputation of MVPA was based upon the same variables as imputation dataset I, plus organized sport information. Associations between MVPA and health outcomes in each method were assessed using linear regression. RESULTS: Non-wear time accounted for 7.5% of epochs during waking hours. The average minutes/day of MVPA was 56.8 (95% CI: 54.2, 59.5) in the non-imputed dataset, 58.4 (95% CI: 55.8, 61.0) in imputed dataset I, and 59.0 (95% CI: 56.3, 61.5) in imputed dataset II. Estimates between datasets were not significantly different. The strength of the relationship between MVPA with BMI and SBP were comparable between all three datasets. CONCLUSION: These findings suggest that studies that achieve high accelerometer compliance with unsystematic patterns of missing data can use the traditional approach of deleting non-wear time from the dataset to obtain MVPA measures without substantial bias.
Resumo:
The first part of the thesis describes a new patterning technique--microfluidic contact printing--that combines several of the desirable aspects of microcontact printing and microfluidic patterning and addresses some of their important limitations through the integration of a track-etched polycarbonate (PCTE) membrane. Using this technique, biomolecules (e.g., peptides, polysaccharides, and proteins) were printed in high fidelity on a receptor modified polyacrylamide hydrogel substrate. The patterns obtained can be controlled through modifications of channel design and secondary programming via selective membrane wetting. The protocols support the printing of multiple reagents without registration steps and fast recycle times. The second part describes a non-enzymatic, isothermal method to discriminate single nucleotide polymorphisms (SNPs). SNP discrimination using alkaline dehybridization has long been neglected because the pH range in which thermodynamic discrimination can be done is quite narrow. We found, however, that SNPs can be discriminated by the kinetic differences exhibited in the dehybridization of PM and MM DNA duplexes in an alkaline solution using fluorescence microscopy. We combined this method with multifunctional encoded hydrogel particle array (fabricated by stop-flow lithography) to achieve fast kinetics and high versatility. This approach may serve as an effective alternative to temperature-based method for analyzing unamplified genomic DNA in point-of-care diagnostic.
Resumo:
Non-intrusive monitoring of health state of induction machines within industrial process and harsh environments poses a technical challenge. In the field, winding failures are a major fault accounting for over 45% of total machine failures. In the literature, many condition monitoring techniques based on different failure mechanisms and fault indicators have been developed where the machine current signature analysis (MCSA) is a very popular and effective method at this stage. However, it is extremely difficult to distinguish different types of failures and hard to obtain local information if a non-intrusive method is adopted. Typically, some sensors need to be installed inside the machines for collecting key information, which leads to disruption to the machine operation and additional costs. This paper presents a new non-invasive monitoring method based on GMRs to measure stray flux leaked from the machines. It is focused on the influence of potential winding failures on the stray magnetic flux in induction machines. Finite element analysis and experimental tests on a 1.5-kW machine are presented to validate the proposed method. With time-frequency spectrogram analysis, it is proven to be effective to detect several winding faults by referencing stray flux information. The novelty lies in the implement of GMR sensing and analysis of machine faults.
Resumo:
The purpose of this study was to validate and cross-validate the Beunen-Malina-Freitas method for non-invasive prediction of adult height in girls. A sample of 420 girls aged 10–15 years from the Madeira Growth Study were measured at yearly intervals and then 8 years later. Anthropometric dimensions (lengths, breadths, circumferences, and skinfolds) were measured; skeletal age was assessed using the Tanner-Whitehouse 3 method and menarcheal status (present or absent) was recorded. Adult height was measured and predicted using stepwise, forward, and maximum R2 regression techniques. Multiple correlations, mean differences, standard errors of prediction, and error boundaries were calculated. A sample of the Leuven Longitudinal Twin Study was used to cross-validate the regressions. Age-specific coefficients of determination (R2) between predicted and measured adult height varied between 0.57 and 0.96, while standard errors of prediction varied between 1.1 and 3.9 cm. The cross-validation confirmed the validity of the Beunen-Malina-Freitas method in girls aged 12–15 years, but at lower ages the cross-validation was less consistent. We conclude that the Beunen-Malina-Freitas method is valid for the prediction of adult height in girls aged 12–15 years. It is applicable to European populations or populations of European ancestry.
Resumo:
The purpose of this study was to validate and cross-validate the Beunen-Malina-Freitas method for non-invasive prediction of adult height in girls. A sample of 420 girls aged 10–15 years from the Madeira Growth Study were measured at yearly intervals and then 8 years later. Anthropometric dimensions (lengths, breadths, circumferences, and skinfolds) were measured; skeletal age was assessed using the Tanner-Whitehouse 3 method and menarcheal status (present or absent) was recorded. Adult height was measured and predicted using stepwise, forward, and maximum R2 regression techniques. Multiple correlations, mean differences, standard errors of prediction, and error boundaries were calculated. A sample of the Leuven Longitudinal Twin Study was used to cross-validate the regressions. Age-specific coefficients of determination (R2) between predicted and measured adult height varied between 0.57 and 0.96, while standard errors of prediction varied between 1.1 and 3.9 cm. The cross-validation confirmed the validity of the Beunen-Malina-Freitas method in girls aged 12–15 years, but at lower ages the cross-validation was less consistent. We conclude that the Beunen-Malina-Freitas method is valid for the prediction of adult height in girls aged 12–15 years. It is applicable to European populations or populations of European ancestry.
Resumo:
The evaluation of the maturation in apple orchards is checked using destructive methods, sampling fruits and analyzing them in the laboratory, making the process slow and expensive. The use of not destructive method to determine fruit maturation in the orchard could accelerate delivery of results and help in determining harvest time, because non-destructive data would allow to verify the maturation on different blocks in the orchard. The aim of this work was to chart fruit maturation in 'Maxi Gala' grafted on two different rootstocks, using destructive and not destructive methods. The non-destructive method used was the portable DA-Meter. The trial was realized at Vacaria, southern Brazillocated 28,44 S and 50,85 W. The samples were harvested on two orchards during the seasons 2014/15 and 2015/16, during six weeks before harvest from January until the second week of February. The sampling was realized in five different points of the orchard, on rootstocks M.9 or Marubakaido with M.9 interstem. Ten-apple samples were collected weekly in each point in the orchard and then evaluated by destructive method (flesh firmness, starch degradation, total soluble solids and acidity) and the not destructive method (DA-Meter). For both seasons, the evolution of the fruit maturation of Maxi Gala showed a similar progression for both rootstocks. The non-destructive method correlated well with the traditional destructive methods, making it a tool for more practical and easy determination of the harvest date.
Resumo:
In this dissertation, we focus on developing new green bio-based gel systems and evaluating both the cleaning efficiency and the release of residues on the treated surface, different micro or no destructive techniques, such as optical microscopy, TGA, FTIR spectroscopy, HS-SPME and micro-Spatially Offset Raman spectroscopy (micro-SORS) were tested, proposing advanced analytical protocols. In the first part, a ternary PHB-DMC/BD gel system composed by biodiesel, dimethyl carbonate and poly-3 hydroxybutyrate was developed for cleaning of wax-based coatings applied on indoor bronze. The evaluation of the cleaning efficacy of the gel was carried out on a standard bronze sample which covered a layer of beeswax by restores of Opificio delle Pietre Dure in Florence, and a real case precious indoor bronze sculpture Pulpito della Passione attributed to Donatello. Results obtained by FTIR analysis showed an efficient removal of the wax coating. In the second part, two new kinds of combined gels based on electrospun tissues (PVA and nylon) and PHB-GVL gel were developed for removal of dammar varnish from painting. The electrospun tissue combined gels exhibited good mechanical property, and showed good efficient in cleaning over normal gel. In the third part, green deep eutectic solvent which consists urea and choline chloride was proposed to produce the rigid gel with agar for the removal of proteinaceous coating from oil painting. Rabbit glue and whole egg decorated oil painting mock-ups were selected for evaluating its cleaning efficiency, results obtained by ATR analysis showed the DES-agar gel has good cleaning performance. Furthermore, we proposed micro-SORS as a valuable alternative non-destructive method to explore the DES diffusion on painting mock-up. As a result, the micro-SORS was successful applied for monitoring the liquid diffusion behavior in painting sub-layer, providing a great and useful instrument for noninvasive residues detection in the conservation field.
Resumo:
High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.
Resumo:
The electrocardiogram (ECG) is the simplest and most effective non-invasive method to assess the electrical activity of the heart and to obtain information on the heart rate (HR) and rhythm. Because information on the HR of very small reptiles (body mass <10 g) is still scarce in the literature, in the present work we describe a procedure for recording the ECG in non-anesthetized geckos (Hemidactylus mabouia, Moreau de Jonnès, 1818) under different conditions, namely manual restraint (MR), spontaneous tonic immobility (TI), and in the non-restrained condition (NR). In the gecko ECG, the P, QRS and T waves were clearly distinguishable. The HR was 2.83 ± 0.02 Hz under MR, which was significantly greater (p < 0.001) than the HR under the TI (1.65 ± 0.09 Hz) and NR (1.60 ± 0.10 Hz) conditions. Spontaneously beating isolated gecko hearts contracted at 0.84 ± 0.03 Hz. The in vitro beating rate was affected in a concentration-dependent fashion by adrenoceptor stimulation with noradrenaline, as well as by the muscarinic cholinergic agonist carbachol, which produced significant positive and negative chronotropic effects, respectively (p < 0.001). To our knowledge, this is the first report on the ECG morphology and HR values in geckos, particularly under TI. The methodology and instrumentation developed here are useful for non-invasive in vivo physiological and pharmacological studies in small reptiles without the need of physical restraint or anesthesia.