952 resultados para Non-isothermal kinetics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal and non-isothermal crystallization kinetics of three metallocene-catalysed short-chain-branched polyethylene (SCBPE) fractions with different degree of branching were investigated by using differential scanning calorimetry (DSC). Narrow molecular weight fractions (M-w = 20,000 and M-w/M-n < 1.15) are used and the degree of branching (CH3 per 1000C) are 1.6, 10.4, 40 respectively. The regime I - II transition temperature are 119.8C, 115.9 degreesC, 113.3 degreesC with the decreasing of degree of branching. Increasing the branch content decreases the rate of secondary nucleation, i,relative to the rate of surface spreading and so increases the range of supercooling over which regime I exists. The rate of bulk crystallization for both isothermal and non-isothermal crystallization decreases with the increasing of degree of branching. Both Ozawa Equation and Kissinger Equation are invalid for non-isothermal crystallization kinetics of SCBPE fractions,that means the effects of the branched chain on crystallization process are more complex than expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of ethylene terephthalate-ethylene oxide segmented copolymers has been studied by means of differential scanning calorimetry (DSC). The kinetics of ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed by the Ozawa equation. During the crystallization of the high-T-m segments (PET), the low-T-m segments (PEO) act as a noncrystalline diluent, the crystallization behavior of PET obeys the Ozawa theory. When the PEO segments begin to crystallize, the PET phase is always partially solidified and the presence of the spherulitic microstructure of PET profoundly influences the crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of polyethylene oxide (PEO) in poly(ethylene terephthalate)poly(ethylene oxide) (PETPEO) segmented copolymer and PEO homopolymer has been studied by means of differential scanning calorimetry, as well as transmission electron microscope. The kinetics of PEO in copolymer and PEO homopolymer under nonisothermal crystallization condition has been analyzed by Ozawa equation. The results show that Ozawa equation only describes the crystallization behavior of PEO-6000 homopolymer successfully, but fails to describe the whole crystallization process of PEO in copolymer because the secondary crystallization in the later stage could not be neglected. Due to the constraint of PET segments imposed on the PEO segments, a distinct two stage of crystallization of PEO in copolymer has been investigated by using Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. In the case of PEO-6000 homopolymer, good linear relation for the whole crystallization process is obtained owing to the secondary crystallization does not occur under our experimental condition. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of Ethylene Terephthalate-Ethylene Oxide (ET-EO) segmented copolymers has been studied with the use of differential scanning calorimetry (DSC). The kinetics of PEO in ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed with the Ozawa equation. The results show that there is no agreement with Ozawa's theoretical predictions in the whole crystallization process owing to the constraint of ET segments imposed on the EO segments. A distinct two-crystallization process has been investigated by using the Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. The value of the Avrami exponent n is independent of the length of soft segments. However, the crystallization rate is sensitive to the length of soft segments. The longer the soft segments, the faster the crystallization will be.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetics of nonisothermal crystallization of poly( beta-hydroxybutyrate) from melt and glassy states were performed by differential scanning calorimetry under various heating and cooling rates. Several different analysis methods were used to describe the process of nonisothermal crystallization. The results showed that both Avrami treatment and a new method developed by combining the Avrami equation and Ozawa equation could describe this system very well. However, Ozawa analysis failed. By using an evaluation method, proposed by Kissinger, activation energies have been evaluated to be 92.6 kJ/mol and 64.6 kJ/mol for crystallization from the glassy and melt state, respectively. (C) 1998 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK) was performed by using differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could describe only the primary stage of nonisothermal crystallization of PEEKK. And, the Ozawa analysis, when applied to this polymer system, failed to describe its nonisothermal crystallization behavior. A new and convenient approach for the nonisothermal crystallization was proposed by combining the Avrami equation with the Ozawa equation. By evaluating the kinetic parameters in this approach, the crystallization behavior of PEEKK was analyzed. According to the Kissinger method, the activation energies were determined to be 189 and 328 kJ/mol for nonisothermal melt and cold crystallization, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on Jeziorny theory, the kinetics of phase transition of poly(ester-imide) has been determined under non-isothermal condition by using differential scanning calorimetry (DSC). Avrami exponent n, kinetic parameters G(c) and rate constant Z(c) were derived and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metal complex, [Ni(en)2(H2O)2](NO3)2 (en = ethylenediamine), was decomposed in a static furnace at 200 C by autogenous decomposition to obtain phase pure metallic nickel nanocrystallites. The nickel metal thus obtained was studied by XRD, IR spectra, SEM and CHN analysis. The nickel crystallites are in the nanometer range as indicated by XRD studies. The IR spectral studies and CHN analyses show that the surface is covered with a nitrogen containing species. Thermogravimetric mass gain shows that the product purity is high (93%). The formed nickel is stable and resistant to oxidation up to 350 C probably due to the coverage of nitrogen containing species. Activation energy for the oxidation of the prepared nickel nanocrystallites was determined by non-isothermal methods and was found to depend on the conversion ratio. The oxidation kinetics of the nickel crystallites obeyed a Johnson–Mehl–Avrami mechanism probably due to the special morphology and crystallite strain present on the metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, TG/DTG and DSC techniques were used to the determination of thermal behavior of prednicarbate alone and associated with glyceryl stearate excipient ( 1: 1 physical mixture). TG/DTG curves obtained for the binary mixture showed a reduction of approximately 37 degrees C to the thermal stability of drug (T(dm/dt-0) (Max)(DTG)). The disappearance of stretching band at 1280 cm(-1) (nu(as) C-O, carbonate group) and the presence of streching band with less intensity at 1750 cm(-1) (nu(s) C-O, ester group) in IR spectrum obtained to the binary mixture submitted at 220 degrees C, when compared with IR spectrum of drug submitted to the same temperature, confirmed the chemical interaction between these substances due to heating. Kinetics parameters of decomposition reaction of prednicarbate were obtained using isothermal (Arrhenius equation) and non-isothermal (Ozawa) methods. The reduction of approximately 45% of activation energy value (E(a)) to the first step of thermal decomposition reaction of drug in the 1:1 (mass/mass) physical mixture was observed by both kinetics methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the partial pressure of carbon dioxide (CO2) on the thermal decomposition process of a calcite (CI) and a dolomite (DP) is investigated in this paper using a thermogravimetric analyser. The tests were non-isothermal at five different heating rates in dynamic atmosphere of air with 0% and 15% carbon dioxide (CO2). In the atmosphere without CO2, the average activation energies (E-alpha) were 197.4 kJ mol(-1) and 188.1 kJ mol(-1) for CI and DP, respectively. For the DP with 15% CO2, two decomposition steps were observed, indicating a change of mechanism. The values of E-alpha for 15% CO2 were 378.7 kJ mol(-1) for the CI, and 299.8 kJ mol(-1) (first decomposition) and 453.4 kJ mol(-1) (second decomposition) for the DP, showing that the determination of E-alpha for DP should in this case be considered separately in those two distinct regions. The results obtained in this study are relevant to understanding the behaviour changes in the thermal decomposition of limestones with CO2 partial pressure when applied to technologies, such as carbon capture and storage (CCS), in which carbon dioxide is present in high concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reversed-pahse high-performance liquid chromatographic (HPLC) methods were developed for the assay of indomethacin, its decomposition products, ibuprofen and its (tetrahydro-2-furanyl)methyl-, (tetrahydro-2-(2H)pyranyl)methyl- and cyclohexylmethyl esters. The development and application of these HPLC systems were studied. A number of physico-chemical parameters that affect percutaneous absorption were investigated. The pKa values of indomethacin and ibuprofen were determined using the solubility method. Potentiometric titration and the Taft equation were also used for ibuprofen. The incorporation of ethanol or propylene glycol in the solvent resulted in an improvement in the aqueous solubility of these compounds. The partition coefficients were evaluated in order to establish the affinity of these drugs towards the stratum corneum. The stability of indomethacin and of ibuprofen esters were investigated and the effect of temperature and pH on the decomposition rates were studied. The effect of cetyltrimethylammonium bromide on the alkaline degradation of indomethacin was also followed. In the presence of alcohol, indomethacin alcoholysis was observed and the kinetics of decomposition were subjected to non-linear regression analysis and the rate constants for the various pathways were quantified. The non-isothermal, sufactant non-isoconcentration and non-isopH degradation of indomethacin were investigated. The analysis of the data was undertaken using NONISO, a BASIC computer program. The degradation profiles obtained from both non-iso and iso-kinetic studies show that there is close concordance in the results. The metabolic biotransformation of ibuprofen esters was followed using esterases from hog liver and rat skin homogenates. The results showed that the esters were very labile under these conditions. The presence of propylene glycol affected the rates of enzymic hydrolysis of the ester. The hydrolysis is modelled using an equation involving the dielectric constant of the medium. The percutaneous absorption of indomethacin and of ibuprofen and its esters was followed from solutions using an in vitro excised human skin model. The absorption profiles followed first order kinetics. The diffusion process was related to their solubility and to the human skin/solvent partition coefficient. The percutaneous absorption of two ibuprofen esters from suspensions in 20% propylene glycol-water were also followed through rat skin with only ibuprofen being detected in the receiver phase. The sensitivity of ibuprofen esters to enzymic hydrolysis compared to the chemical hydrolysis may prove valuable in the formulation of topical delivery systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drying has been extensively used as a food preservation procedure. The longer life attained by drying is however accompanied by huge energy consumption and deterioration of quality. Moisture diffusivity is an important factor that is considered essential to understand for design, analysis, and optimization of drying processes for food and other materials. Without an accurate value of moisture diffusivity, drying kinetics, energy consumption, quality attributes such as shrinkage, texture, and microstructure cannot be predicted properly. However, moisture diffusivities differ due to variation of composition and microstructure of foodstuff and drying variables. For a particular food, it changes with many factors including moisture content, water holding capacity, process variables and physiochemical attributes of food. Published information on moisture diffusivities of banana is inadequate and sometimes inconsistent due to lack of precise repeatable analysis techniques. In this work, the effective moisture diffusivity of banana was determined by Thermogravimetric Analysis (TGA), which ensures precise measurements and reproduction of experiments. A TGA Q500 V20.13 Build 39 was deployed to obtain the drying curve of the food material. It was found that effective moisture diffusivity ranged from 6.63 x10-10 to 1.03 x10-9 and 1.34 x10-10 to 6.60 x10-10 for isothermal at 70 0C and non-isothermal process respectively.These values are consistent with the value of moisture diffusivity found in the literature.