991 resultados para Non-ideal mixtures
Resumo:
Ce mémoire de maitrise propose de faire une analyse féministe du concept de droit de la femme tel qu’il est conçu dans les théories des droits humains. Le paradigme libéral en théorie des droits humains sera critiqué parce qu’il contient des idéalisations inégalitaires. Cela mènera à aborder la question sous l’angle de droits humains spécifiques aux femmes. Cette investigation commencera par l’examen de la possibilité théorique de produire une théorie des droits de la femme plausible. L’importance de tenir compte des conditions non idéales du monde sera soulignée. Puis, une argumentation en faveur de droits socioéconomiques spécifiques sera faite. Enfin, cela mènera à une défense de l’approche des capabilités de Martha Nussbaum pour la protection des intérêts particuliers des femmes.
Resumo:
In the present work are established initially the fundamental relationships of thermodynamics that govern the equilibrium between phases, the models used for the description of the behavior non ideal of the liquid and vapor phases in conditions of low pressures. This work seeks the determination of vapor-liquid equilibrium (VLE) data for a series of multicomponents mixtures of saturated aliphatic hydrocarbons, prepared synthetically starting from substances with analytical degree and the development of a new dynamic cell with circulation of the vapor phase. The apparatus and experimental procedures developed are described and applied for the determination of VLE data. VLE isobarics data were obtained through a Fischer s ebulliometer of circulation of both phases, for the systems pentane + dodecane, heptane + dodecane and decane + dodecane. Using the two new dynamic cells especially projected, of easy operation and low cost, with circulation of the vapor phase, data for the systems heptane + decane + dodecane, acetone + water, tween 20 + dodecane, phenol + water and distillation curves of a gasoline without addictive were measured. Compositions of the equilibrium phases were found by densimetry, chromatography, and total organic carbon analyzer. Calibration curves of density versus composition were prepared from synthetic mixtures and the behavior excess volumes were evaluated. The VLE data obtained experimentally for the hydrocarbon and aqueous systems were submitted to the test of thermodynamic consistency, as well as the obtained from the literature data for another binary systems, mainly in the bank DDB (Dortmund Data Bank), where the Gibbs-Duhem equation is used obtaining a satisfactory data base. The results of the thermodynamic consistency tests for the binary and ternary systems were evaluated in terms of deviations for applications such as model development. Later, those groups of data (tested and approved) were used in the KijPoly program for the determination of the binary kij parameters of the cubic equations of state original Peng-Robinson and with the expanded alpha function. These obtained parameters can be applied for simulation of the reservoirs petroleum conditions and of the several distillation processes found in the petrochemistry industry, through simulators. The two designed dynamic cells used equipments of national technology for the determination of VLE data were well succeed, demonstrating efficiency and low cost. Multicomponents systems, mixtures of components of different molecular weights and also diluted solutions may be studied in these developed VLE cells
Resumo:
In the present work are established initially the fundamental relationships of thermodynamics that govern the equilibrium between phases, the models used for the description of the behavior non ideal of the liquid and vapor phases in conditions of low pressures. This work seeks the determination of vapor-liquid equilibrium (VLE) data for a series of multicomponents mixtures of saturated aliphatic hydrocarbons, prepared synthetically starting from substances with analytical degree and the development of a new dynamic cell with circulation of the vapor phase. The apparatus and experimental procedures developed are described and applied for the determination of VLE data. VLE isobarics data were obtained through a Fischer's ebulliometer of circulation of both phases, for the systems pentane + dodecane, heptane + dodecane and decane + dodecane. Using the two new dynamic cells especially projected, of easy operation and low cost, with circulation of the vapor phase, data for the systems heptane + decane + dodecane, acetone + water, tween 20 + dodecane, phenol + water and distillation curves of a gasoline without addictive were measured. Compositions of the equilibrium phases were found by densimetry, chromatography, and total organic carbon analyzer. Calibration curves of density versus composition were prepared from synthetic mixtures and the behavior excess volumes were evaluated. The VLE data obtained experimentally for the hydrocarbon and aqueous systems were submitted to the test of thermodynamic consistency, as well as the obtained from the literature data for another binary systems, mainly in the bank DDB (Dortmund Data Bank), where the Gibbs-Duhem equation is used obtaining a satisfactory data base. The results of the thermodynamic consistency tests for the binary and ternary systems were evaluated in terms of deviations for applications such as model development. Later, those groups of data (tested and approved) were used in the KijPoly program for the determination of the binary kij parameters of the cubic equations of state original Peng-Robinson and with the expanded alpha function. These obtained parameters can be applied for simulation of the reservoirs petroleum conditions and of the several distillation processes found in the petrochemistry industry, through simulators. The two designed dynamic cells used equipments of national technology for the determination Humberto Neves Maia de Oliveira Tese de Doutorado PPGEQ/PRH-ANP 14/UFRN of VLE data were well succeed, demonstrating efficiency and low cost. Multicomponents systems, mixtures of components of different molecular weights and also diluted solutions may be studied in these developed VLE cells
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We studied free surface oscillations of a fluid in a cylinder tank excited by an electric motor with limited power supply. We investigated the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Numerical experiments are carried out to present the existence of several types of regular and chaotic attractors. For the first time powers (power of the motor, power consumed by the damping force under fluid free surface oscillations, and a total power) are calculated, investigated, and shown for different regimes, regular and chaotic ones for parametric resonance interactions. [DOI: 10.1115/1.4005844]
Resumo:
Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.
Resumo:
A new method has recently been proposed by us for accurate measurement of the solar cell temperature in any operational regime, in particular, at a maximum power point (MPP) of the I-V curve (T-p-n(MPP)). For this, fast switching of a cell from MPP to open circuit (OC) regime is carried out and open circuit voltage V-oc is measured immediately (within about 1 millisecond), so that this value becomes to be an indicator of T-p-n(MPP). In the present work, we have considered a practical case, when a solar cell is heated not only by absorption of light incident upon its surface (called "photoactive" absorption of power), but also by heat transferred from structural elements surrounding the cell and heated by absorption of direct or diffused sunlight ("non-photoactive" absorption of power with respect to a solar cell). This process takes place in any concentrator module with non-ideal concentrators. Low overheating temperature of the p-n junction (or p-n junctions in a multijunction cell) is a cumulative parameter characterizing the quality of a solar module by the factor of heat removal effectiveness and, at the same time, by the factor of low "non-photoactive" losses.