964 resultados para Non-enzymatic antioxidants


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the early 20th century, many researchers have attempted to determine how fungi are able to emit light. The first successful experiment was obtained using the classical luciferin-luciferase test that consists of mixing under controlled conditions hot (substrate/luciferin) and cold (enzyme/luciferase) water extracts prepared from bioluminescent fungi. Failures by other researchers to reproduce those experiments using different species of fungi lead to the hypothesis of a non-enzymatic luminescent pathway. Only recently, the involvement of a luciferase in this system was proven, thus confirming its enzymatic nature. Of the 100 000 described species in Kingdom Fungi, only 71 species are known to be luminescent and they are distributed unevenly amongst four distantly related lineages. The question we address is whether the mechanism of bioluminescence is the same in all four evolutionary lineages suggesting a single origin of luminescence in the Fungi, or whether each lineage has a unique mechanism for light emission implying independent origins. We prepared hot and cold extracts of numerous species representing the four bioluminescent fungal lineages and performed cross-reactions (luciferin x luciferase) in all possible combinations using closely related non-luminescent species as controls. All cross-reactions with extracts from luminescent species yielded positive results, independent of lineage, whereas no light was emitted in cross-reactions with extracts from non-luminescent species. These results support the hypothesis that all four lineages of luminescent fungi share the same type of luciferin and luciferase, that there is a single luminescent mechanism in the Fungi, and that fungal luciferin is not a ubiquitous molecule in fungal metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Critical lower limb ischemia is a severe disease. A common approach is infrainguinal bypass. Synthetic vascular prosthesis, are good conduits in high-flow low-resistance conditions but have difficulty in their performance as small diameter vessel grafts. A new approach is the use of native decellularized vascular tissues. Cell-free vessels are expected to have improved biocompatibility when compared to synthetic and are optimal natural 3D matrix templates for driving stem cell growth and tissue assembly in vivo. Decellularization of tissues represent a promising field for regenerative medicine, with the aim to develop a methodology to obtain small-diameter allografts to be used as a natural scaffold suited for in vivo cell growth and pseudo-tissue assembly, eliminating failure caused from immune response activation. Material and methods. Umbilical cord-derived mesenchymal cells isolated from human umbilical cord tissue were expanded in advanced DMEM. Immunofluorescence and molecular characterization revealed a stem cell profile. A non-enzymatic protocol, that associate hypotonic shock and low-concentration ionic detergent, was used to decellularize vessel segments. Cells were seeded cell-free scaffolds using a compound of fibrin and thrombin and incubated in DMEM, after 4 days of static culture they were placed for 2 weeks in a flow-bioreactor, mimicking the cardiovascular pulsatile flow. After dynamic culture, samples were processed for histological, biochemical and ultrastructural analysis. Discussion. Histology showed that the dynamic culture cells initiate to penetrate the extracellular matrix scaffold and to produce components of the ECM, as collagen fibres. Sirius Red staining showed layers of immature collagen type III and ultrastructural analysis revealed 30 nm thick collagen fibres, presumably corresponding to the immature collagen. These data confirm the ability of cord-derived cells to adhere and penetrate a natural decellularized tissue and to start to assembly into new tissue. This achievement makes natural 3D matrix templates prospectively valuable candidates for clinical bypass procedures

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zelladhäsionsphänomene spielen eine wichtige Rolle in vielen biologischen Vorgängen, wie z. B. in der Embryogenese, der Wundheilung, der Immunantwort und Entzündungsprozessen. So wird die inflammatorische Kaskade durch P- und E-Selektin vermittelte Adhäsion der im Blutstrom zirkulierenden Leukozyten an Endothelzellen eingeleitet. Übermäßige Zelladhäsion kann hingegen eine Vielzahl von Krankheiten bewirken. Nachgewiesen ist eine solche Beteiligung der Selektine u. a. bei rheumatoider Arthritis, Erkrankungen der Herzkranzgefäße und dem Reperfusionssyndrom. Ein Ansatz zur Therapie besteht in der Verabreichung löslicher Selektinliganden, die kompetitiv an die Selektine binden und deren Aktivität dadurch mindern. Die wichtigste Leitstruktur für pharmakologisch aktive Selektinliganden stellt hierbei das Tetrasaccharid-Epitop Sialyl-Lewisx (sLex) dar.rnrnIn dieser Arbeit wurde nach einer nicht enzymatischen Strategie ein auf der sLex Struktur basierender Baustein für die Festphasen-Peptidsynthese synthetisiert. Aus diesem sollen nach Schutzgruppen-Manipulationen durch Einsatz in automatisierten Festphasen-Peptidsynthesen, verschiedene Glycopeptide als Zelladhäsionsinhibitoren für Selektine gewonnen werden. Der rasche Abbau der sLex-Struktur im Organismus schränkt die pharmakologische Nutzung von sLex-Derivaten jedoch stark ein. Das synthetisierte Kohlenhydrat Epitop weist daher gegenüber der natürlichen sLex-Struktur mehrere Modifikationen auf, die zu einer erhöhten metabolischen Stabilität führen sollen, ohne die für eine effektive Bindung zum Rezeptor nötigen Wechselwirkungen zu beeinträchtigen. rnrnAus diesem Grund wurde der synthetisch anspruchsvolle Sialinsäure-Baustein durch die L-Cyclohexylmilchsäure substituiert. Die Anbindung des Kohlenhydrat-Epitops an das Peptid wird im Gegensatz zur natürlichen N-glycosidischen Verknüpfung hier über eine zusätzliche Glucosamin-Einheit O-glycosidisch an die Aminosäure L-Threonin bewirkt. Außerdem wird der labile Fucose-Rest durch die D-Arabinose ersetzt, die nicht im menschlichen Organismus vorkommt, jedoch die drei essentiellen pharmakophoren Hydroxylfunktionen in der gleichen dreidimensionalen Orientierung präsentiert wie die L-Fucose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diabetic neuropathy (DN) is an important complication contributing to high morbidity and morbidity of diabetic subjects. Primarily, interventional strategies aim at normalization hyperglycemia (to prevent development and progression of DN), at early diagnosis and at prevention of ulcers and amputations. In addition, an increasing number of pharmaceutical agents is used to symptomatically treat dysesthesia and pain associated with DN. During recent years attempts have been made to pharmacologically treat DN by acting on underlying patho-physiological mechanisms (e.g. sorbitol pathway, non-enzymatic glycation, microvascular abnormalities). So far, these strategies have not changed clinical praxis. This review will give a systematic overview of DN and summarize current pharmacological options to symptomatically treat dysesthesia and pain associated with DN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES The photoinitiator diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) is more reactive than a camphorquinone/amine (CQ) system, and TPO-based adhesives obtained a higher degree of conversion (DC) with fewer leached monomers. The hypothesis tested here is that a TPO-based adhesive is less toxic than a CQ-based adhesive. METHODS A CQ-based adhesive (SBU-CQ) (Scotchbond Universal, 3M ESPE) and its experimental counterpart with TPO (SBU-TPO) were tested for cytotoxicity in human pulp-derived cells (tHPC). Oxidative stress was analyzed by the generation of reactive oxygen species (ROS) and by the expression of antioxidant enzymes. A dentin barrier test (DBT) was used to evaluate cell viability in simulated clinical circumstances. RESULTS Unpolymerized SBU-TPO was significantly more toxic than SBU-CQ after a 24h exposure, and TPO alone (EC50=0.06mM) was more cytotoxic than CQ (EC50=0.88mM), EDMAB (EC50=0.68mM) or CQ/EDMAB (EC50=0.50mM). Cultures preincubated with BSO (l-buthionine sulfoximine), an inhibitor of glutathione synthesis, indicated a minor role of glutathione in cytotoxic responses toward the adhesives. Although the generation of ROS was not detected, a differential expression of enzymatic antioxidants revealed that cells exposed to unpolymerized SBU-TPO or SBU-CQ are subject to oxidative stress. Polymerized SBU-TPO was more cytotoxic than SBU-CQ under specific experimental conditions only, but no cytotoxicity was detected in a DBT with a 200μm dentin barrier. SIGNIFICANCE Not only DC and monomer-release determine the biocompatibility of adhesives, but also the cytotoxicity of the (photo-)initiator should be taken into account. Addition of TPO rendered a universal adhesive more toxic compared to CQ; however, this effect could be annulled by a thin dentin barrier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is aimed at improving our current knowledge of the non-enzymatic inecl~anisins involved in brown-rot decay, as well as the exploration of potential applications of a brown-rot mimetic model system in paper recycling processes. The study was divided into two parts. The first part focussed on the chemical mechanisms involved in chelation and reduction of iron by a low molecular weight chelator (isolated from the brown-rot fungus Gloeophyllz~m tmbeum) and its model compound 2,3- dihydroxybenzoic acid (2,3-DHBA). Chelation as well as free radical generation mediated by this system were studied by ESR measurement. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on hydroxyl radical generation by a Fenton type system could be determined using ESR spin-trapping techniques. The results also support the hypothesis that superoxide radicals are involved in the chelator-mediated Fenton process. In the second part of the study, the effect of a chelator-mediated Fenton system for the improvement of deinking efficiency and the n~odification of fiber and paper properties was studied. For the deinking study, copy paper was laser printed with an identical standard pattern. Then repulping and flotation operations were performed to remove ink particles. Under properly controlled deinking conditions, the chelator mediated treatment (CMT) resulted in a reduction in dirt count over that of conventional deinking procedures with no significant loss of pulp strength. To study the effect of the chelator system treatment on the quality of pulp with different fines content, a fully bleached hardwood kraft pulp was beaten to different freeness levels and treated with the chelator-mediated free radical system. The result shows that virgin fiber and heavily beaten fiber respond differently to the free radical treatment. Unbeaten fibers become more flexible and easier to collapse after free radical treatment, while beaten fibers show a reduction in fines and small materials after mild free radical treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The overall objective of this thesis was to gain further understanding of the non-enzymatic mechanisms involved in brown-rot wood decay, especially the role of pH, oxalic acid, and low molecular catecholate compounds on the dissolution and reduction of iron, and the formation of reactive oxygen species. Another focus of this study will be the potential application of a biomimetic free radical generating system inspired from fungi wood decay process, especially the non-enzymatic mechanism. The possible pathways of iron uptake and iron redox cycling in non-enzymatic brown-rot decay were investigated in this study. UV-Vis spectroscopy and HPLC were employed to study the kinetics and pathways of the interaction between iron and model catecholate compounds under different pH and chelator/iron molar ratio conditions. Iron chelation and reduction during early non-enzymatic wood decay processes have been studied in this thesis. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on the hydroxyl radical generation in a Fenton type system can be determined using ESR spin-trapping techniques. Data also support the hypothesis that superoxide radicals are involved in chelator-mediated Fenton processes. The mechanisms involved in free radical activation of Thermal Mechanical Pulp fibers were investigated. The activation of TMP fibers was evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. A mediated Fenton system was evaluated for decolorization of several types of dyes. The result shows that the Fenton system mediated by a catecholate-type chelator effectively reduced the color of a diluted solution of synthetic dyes after 90 minutes of treatment at room temperature. The results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical species to increase the decolorization efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The equilibrium constant (K(,c)) under physiological conditions (38(DEGREES)C, 0.25 M ionic strength (I), pH 7.0) for the glycine synthase (GS) reaction (E C 2.1.2.1.0) (Equation 1) has been determined. (UNFORMATTED TABLE FOLLOWS)^ 5,10-CH(,2)-H(,4)Folate NADH NH (,4)+ CO(,2) ^ K(,c) = Eq. 1^ H(,4)Folate NAD('+) GLY ^(TABLE ENDS)^ The enzymatic instability of the GS enzyme complex itself has made it necessary to determine the overall K(,c) from the product of constants for the partial reactions of GS determined separately under the same conditions. The partial reactions are the H(,4)Folate-formaldehyde (CH(,2)(OH)(,2)) condensation reaction (Reaction 1) the K(,c) for which has been reported by this laboratory (3.0 x 10('4)), the lipoate (LipS(,2)) dehydrogenase reaction (LipDH) (Reaction 2) and the Gly-Lip^ decarboxylase reaction (Reaction 3) forming reduced lipoate (Lip(SH)(,2)), NH(,4)('+), CO(,2) and CH(,2)(OH)(,2.) (UNFORMATTED TABLE FOLLOWS)(,)^ H(,4)Fote + CH(,2)(OH)(,2) 5,10-CH(,2)-H(,4)Folate (1)^ Lip(SH)(,2) + NAD('+) LipS(,2) + NADH + H('+) (2)^ H('+) + Gly + LipS(,2) Lip(SH)(,2) + NH(,4)('+) CO(,2) + CH(,2)(OH)(,2) (3)^(TABLE ENDS)^ In this work the K(,c) for Reactions 2 and 3 are reported.^ The K(,c)' for the LipDH reaction described by other authors was reported with unexplainable conclusions regarding the pH depend- ence for the reaction. These conclusions would imply otherwise unexpected acid dissociation constants for reduced and oxidized lipoate. The pK(,a)',s for these compounds have been determined to resolve discrepancy. The conclusions are as follows: (1) The K(,c) for the LipDH reaction is 2.08 x 10('-8); (2) The pK(,a)',s for Lip(SH)(,2) are 4.77(-COOH), 9.91(-SH), 11.59(-SH); for LipS(,2) the carboxyl pK(,a)' is 4.77; (3) Contrary to previous literature, the log K(,c)' for the LipDH reaction is a linear function of the pH, a conclusion supported by the values for the dissociation constants.^ The K(,c) for Reaction 3 is the product of constants for Reactions 4-7. (UNFORMATTED TABLE FOLLOWS)^ LipSHSCH(,2)OH + H(,2)O Lip(SH)(,2) + CH(,2)(OH)(,2) (4)^ H(,2)O + LipSHSCH(,2)NH(,3)('+) LipSHSCH(,2)OH + NH(,4)('+) (5)^ LipSHSCH(,2)NH(,2) + H('+) LipSHSCH(,2)NH(,3)('+) (6)^ Gly + LipS(,2) LipSHSCH(,2)NH(,2) + CO(,2) (7)^(TABLE ENDS)^ Reactions 4-6 are non-enzymatic reactions whose constants were determined spectrophotometrically. Reaction 7 was catalyzed by the partially purified P-protein of GS with equilibrium approached from both directions. The value for K(,c) for this reaction is 8.15 x 10('-3). The combined K(,c) for Reactions 4-7 or Reaction 3 is 2.4 M.^ The overall K(,c) for the GS reaction determined by combination of values for Reactions 1-3 is 1.56 x 10('-3). ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last years, the hive products such as propolis and pollen have been highlighted due to their potential health benefits, including antioxidant abilities that have been correlated with their content in phenolic compounds. Regardless of the several factors that may affect propolis and pollen antioxidant activity, these products have been shown to possess, either through the use of in vitro or in vivo models, important features concerning the modulation of cellular oxidative stress caused by environmental factors (e.g. UV-light), metals, pesticides and other xenobiotics. This modulatory effect focus not only on the capture of radicals that these elements might eventually generate, but also by the activation of cellular antioxidant mechanisms such as enzymatic antioxidants or by modifying gene expression patterns. Although the mechanisms behind these responses are not fully known, it has been showed that caffeic acid phenethyl ester, pinocembrin and chrisin are some of the compounds responsible for some of these responses. Taking into account the gathered results, propolis and pollen can be viewed as potential agents in the re-stabilization of cellular oxidative imbalance and in the prevention of oxidative stress related diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypoxia is a stress condition in which tissues are deprived of an adequate O2 supply; this may trigger cell death with pathological consequences in cardiovascular or neurodegenerative disease. Reperfusion is the restoration of an oxygenated blood supply to hypoxic tissue and can cause more cell injury. The kinetics and consequences of reactive oxygen and nitrogen species (ROS/RNS) production in cardiomyoblasts are poorly understood. The present study describes the systematic characterization of the kinetics of ROS/RNS production and their roles in cell survival and associated protection during hypoxia and hypoxia/reperfusion. H9C2 cells showed a significant loss of viability under 2% O2 for 30min hypoxia and cell death; associated with an increase in protein oxidation. After 4h, apoptosis induction under 2% O2 and 10% O2 was dependent on the production of mitochondrial superoxide (O2-•) and nitric oxide (•NO), partly from nitric oxide synthase (NOS). Both apoptotic and necrotic cell death during 2% O2 for 4h could be rescued by the mitochondrial complex I inhibitor; rotenone and NOS inhibitor; L-NAME. Both L-NAME and the NOX (NADPH oxidase) inhibitor; apocynin reduced apoptosis under 10% O2 for 4h hypoxia. The mitochondrial uncoupler; FCCP significantly reduced cell death via a O2-• dependent mechanism during 2% O2, 30min hypoxia. During hypoxia (2% O2, 4h)/ reperfusion (21% O2, 2h), metabolic activity was significantly reduced with increased production of O2-• and •NO, during hypoxia but, partially restored during reperfusion. O2-• generation during hypoxia/reperfusion was mitochondrial and NOX- dependent, whereas •NO generation depended on both NOS and non-enzymatic sources. Inhibition of NOS worsened metabolic activity during reperfusion, but did not effect this during sustained hypoxia. Nrf2 activation during 2% O2, a sustained hypoxia and reperfusion was O2-•/•NO dependent. Inhibition of NF-?B activation aggravated metabolic activity during 2% O2, 4h hypoxia. In conclusion, mitochondrial O2-•, but, not ATP depletion is the major cause of apoptotic and necrotic cell death in cardiomyoblasts under 2% O2, 4h hypoxia, whereas apoptotic cell death under 10% O2, 4h, is due to NOS-dependent •NO. The management of ROS/RNS rather than ATP is required for improved survival during hypoxia. O2-• production from mitochondria and NOS is cardiotoxic during hypoxia/reperfusion. NF-?B activation during hypoxia and NOS activation during reperfusion is cardiomyoblast protective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidation and S-nitrosylation of cysteinyl thiols (Cys-SH) to sulfenic (Cys-SOH), sulfinic (Cys-SO2H), sulfonic acids (Cys-SO3H), disulphides and S-nitrosothiols are suggested as important post-translational modifications that can activate or deactivate the function of many proteins. Non-enzymatic post-translational modifications to cysteinyl thiols have been implicated in a wide variety of physiological and pathophysiological states but have been difficult to monitor in a physiological setting because of a lack of experimental tools. The purpose of this review is to bring together the approaches that have been developed for stably trapping cysteine either in its reduced or oxidised forms for enrichment and or subsequent mass spectrometric analysis. These tools are providing insight into potential targets for post-translational modifications to cysteine modification in vivo. This article is part of a Special Issue entitled: Special Issue: Posttranslational Protein modifications in biology and Medicine. © 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is increasing evidence that non-enzymatic post-translational protein modifications might play key roles in various diseases. These protein modifications can be caused by free radicals generated during oxidative stress or by their products generated during lipid peroxidation. 4-Hydroxynonenal (HNE), a major biomarker of oxidative stress and lipid peroxidation, has been recognized as important molecule in pathology as well as in physiology of living organisms. Therefore, its detection and quantification can be considered as valuable tool for evaluating various pathophysiological conditions.The HNE-protein adduct ELISA is a method to detect HNE bound to proteins, which is considered as the most likely form of HNE occurrence in living systems. Since the earlier described ELISA has been validated for cell lysates and the antibody used for detection of HNE-protein adducts is non-commercial, the aim of this work was to adapt the ELISA to a commercial antibody and to apply it in the analysis of human plasma samples.After modification and validation of the protocol for both antibodies, samples of two groups were analyzed: apparently healthy obese (n=62) and non-obese controls (n=15). Although the detected absolute values of HNE-protein adducts were different, depending on the antibody used, both ELISA methods showed significantly higher values of HNE-protein adducts in the obese group. © 2013 The Authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyolefins, which normally undergo high temperature manufacturing and fabrication operations, are susceptible to oxidation during each stage of their lifecycle. Stabilisers and antioxidants are used to inhibit the oxidative damage that is ultimately responsible for loss of physical properties, embrittlement and premature failure. Environmental awareness and health and safety considerations have spurred intense searches for new approaches to procure improved, safe, and more efficient antioxidants and stabiliser systems for polymers. Current activities have concentrated on two approaches: the first advocates the use of biological (naturally occurring) antioxidants, and the second relies on the use of reactive antioxidants that are chemically attached onto the polymer backbone for greater permanence and safety. Stabilisation of polyolefins through the use of vitamin E and some reactive, non-migratory antioxidants is the subject matter of this chapter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter summarizes types of lipid oxidation – both enzymatic and non-enzymatic – and discusses reactivity, biological effects and metabolism of lipid oxidation products. Mechanistic explanations are provided for the diverse biological effects of lipid oxidation products that range from deleterious to regulatory and even to protective. Finally, analytical techniques used for detection of lipid oxidation and lipid oxidation products are discussed.