963 resultados para Non isothermal kinetic
Resumo:
Silane grafted kaolinite (KGS) was prepared through grinding kaolinite and then grafting with 3-aminopropyltriethoxysilane. The influence of KGS on the curing kinetics of cycloaliphatic epoxy resin was studied by non-isothermal differential scanning calorimetry at different heating rates. The reaction activation energy (Ea) was determined based on the Flynn–Wall–Ozawa method. The results of dynamic differential scanning calorimetry (DSC) kinetic analysis show that the surface hydroxyl groups of clay decreases the Ea from 70.6 kJ mol− 1 to 62.8 kJ mol− 1 and accelerates the curing reaction of the epoxy resin. The silane grafting reactions consume the surface hydroxyl groups of kaolinite and lead to a decrease in the catalytic efficiency of KGS in the curing of epoxy resin.
Resumo:
In the present study a two dimensional model is first developed to show the behaviour of dense non-aqueous phase liquids (DNAPL) within a rough fracture. To consider the rough fracture, the fracture is imposed with variable apertures along its plane. It is found that DNAPL follows preferential pathways. In next part of the study the above model is further extended for non-isothermal DNAPL flow and DNAPL-water interphase mass transfer phenomenon. These two models are then coupled with joint deformation due to normal stresses. The primary focus of these models is specifically to elucidate the influence of joint alteration due to external stress and fluid pressures on flow driven energy transport and interphase mass transfer. For this, it is assumed that the critical value for joint alteration is associated with external stress and average of water and DNAPL pressures in multiphase system and the temporal and spatial evolution of joint alteration are determined for its further influence on energy transport and miscible phase transfer. The developed model has been studied to show the influence of deformation on DNAPL flow. Further this preliminary study demonstrates the influence of joint deformation on heat transport and phase miscibility via multiphase flow velocities. It is seen that the temperature profile changes and shows higher diffusivity due to deformation and although the interphase miscibility value decreases but the lateral dispersion increases to a considerably higher extent.
Resumo:
The theoretical analysis, based on the perturbation technique, of ion-acoustic waves in the vicinity of a Korteweg-de Vries (K-dV) equation derived in a plasma with some negative ions has been made. The investigation shows that the negative ions in plasma with isothermal electrons introduced a critical concentration at which the ion-acoustic wave plays an important role of wave-breaking and forming a precursor while the plasma with non-isothermal electrons has no such singular behaviour of the wave. These two distinct features of ion waves lead to an overall different approach of present study of ion-waves. A distinct feature of non-uniform transition from the nonisothermal case to isothermal case has been shown. Few particular plasma models have been chosen to show the characteristics behaviour of the ion-waves existing in different cases
Resumo:
The effect of a particle size distribution on the fractional reaction has been analysed. The analysis shows that for non-isothermal TG the activation energy and frequency factor evaluated from the fractional reaction by conventional method depend on the particle size distribution, and this may lead to a kinetic compensating effect. Particle size distribution may also lead to an erroneous conclusion about the change in the mechanism of reaction.
Resumo:
Transparent SrO-2B(2)O(3) (SBO) glasses were fabricated via the conventional melt-quenching technique. X-ray diffraction (XRD) and differential thermal analysis (DTA) studies carried out on the as-quenched glasses confirmed their amorphous and glassy nature, respectively. The thermal parameters were evaluated for the as-quenched glass-plates using non-isothermal DTA experiments. The average values of the activation energies for the glass transition and crystallization of these glasses were 800 +/- 10 kJ/mol and 298 +/- 10 kJ/mol respectively. The values of the kinetic parameters that were obtained by different non-isothermal techniques were in close agreement.
Resumo:
The effect of ultrasound on the thermal decomposition behaviour of ammonium perchlorate (AP) has been investigated. It was observed that significant changes in the thermal behaviour of A-P, followed using differential thermal analysis and thermogravimetry, was observed when AP was subjected to power ultrasound in water saturated with oxygen-nitrogen mixture. The decomposition temperature of AP was found to have been lowered by nearly 25degreesC. A similar thermal sensitization was observed in AP when subjected to sonication in the presence of transition metal oxides. Kinetic parameters were calculated for AP, modified AP and catalyzed AP decomposition using non-isothermal kinetics. The activation energy for the decomposition of the sonicated AP samples were found to be lower than normal AP.
Resumo:
Interpenetrating polymer networks (IPNs) of trimethylol propane triacrylate (TMPTA) and 1,6-hexane diol diacrylate (HDDA) at different weight ratios were synthesized. Temperature modulated differential scanning calorimetry (TMDSC) was used to determine whether the formation resulted in a copolymer or interpenetrating polymer network (IPN). These polymers are used as binders for microstereolithography (MSL) based ceramic microfabrication. The kinetics of thermal degradation of these polymers are important to optimize the debinding process for fabricating 3D shaped ceramic objects by MSL based rapid prototyping technique. Therefore, thermal and thermo-oxidative degradation of these IPNs have been studied by dynamic and isothermal thermogravimetry (TGA). Non-isothermal model-free kinetic methods have been adopted (isoconversional differential and KAS) to calculate the apparent activation energy (E a) as a function of conversion (α) in N 2 and air. The degradation of these polymers in N 2 atmosphere occurs via two mechanisms. Chain end scission plays a dominant role at lower temperature while the kinetics is governed by random chain scission at higher temperature. Oxidative degradation shows multiple degradation steps having higher activation energy than in N 2. Isothermal degradation was also carried out to predict the reaction model which is found to be decelerating. It was shown that the degradation of PTMPTA follows a contracting sphere reaction model in N 2. However, as the HDDA content increases in the IPNs, the degradation reaction follows Avrami-Erofeev model and diffusion governed mechanisms. The intermediate IPN compositions show both type of mechanism. Based on the above study, debinding strategy for MSL based microfabricated ceramic structure has been proposed. © 2012 Elsevier B.V.
Resumo:
No presente trabalho, foram processados compósitos de polietileno de alta densidade (PEAD) com hidroxiapatita deficiente de cálcio (HA), com o objetivo de obter materiais com melhores propriedades mecânicas e bioatividade. A adição da HA deficiente de cálcio proporcionou um aumento no módulo de elasticidade (maior rigidez), menor resistência ao impacto e decréscimo do grau de cristalinidade do PEAD, proporcionando uma maior bioatividade ao material. A análise térmica exploratória (sistema não isotérmico) foi realizada por meio da técnica de calorimetria exploratória diferencial (DSC) e foram avaliados os teores de fosfato de cálcio e a velocidade de rotação da rosca no processamento dos materiais. No estudo da cristalização não-isotérmica observou-se uma diminuição da temperatura de cristalização com o aumento da taxa de resfriamento para todos os materiais sintetizados. A energia de ativação (Ea) da cristalização dos materiais foi avaliada por meio dos métodos Kissinger e Ozawa. A amostra com 5% de HA deficiente de cálcio e velocidade de processamento de 200 rpm foi a que apresentou menor valor de energia de ativação, 262 kJ/mol, menor desvio da linearidade e a que mais se assemelhou à matriz de PEAD sem HA. O teor de hidroxiapatita deficiente de cálcio não favorece o processo de cristalização devido à alta energia de ativação determinada pelos métodos descritos. Provavelmente, a velocidade de rotação, favorece a dispersão da carga na matriz de PEAD, dificultando o processo de cristalização. Na aplicação do método de Osawa-Avrami, os coeficientes de correlação indicaram perda na correlação linear. Estas perdas podem estar associadas a uma pequena percentagem de cristalização secundária e/ou à escolha das temperaturas utilizadas para determinar a velocidade de cristalização. Na determinação dos parâmetros pelo método de Mo, as menores percentagens de cristalização apresentaram um grande desvio da linearidade, com coeficiente de correlação bem menor que 1 e com o aumento da percentagem de cristalização, o desvio da linearidade diminui, ficando próximo de 1. Os resultados obtidos mostraram que o modelo de Mo e de Osawa-Avrami não foram capazes de definir o comportamento cinético dos materiais produzidos neste trabalho.
Resumo:
The isothermal and non-isothermal crystallization processes of nylon 1212 were investigated by polarized optical microscopy. The crystal growth rates of nylon 1212 measured in isothermal conditions at temperatures ranged from 182 to 132 degreesC are well comparable with those measured by non-isothermal procedures (cooling rates ranged from 0.5 to 11 degreesC/min). The kinetic data were examined with the Hoffman-Lauritzen nucleation theory on the basis of the obtained values of the thermodynamic parameters of nylon 1212. The classical regime I --> II and regime II --> III transitions occur at the temperatures of 179 and 159 degreesC, respectively. The crystal growth parameters were calculated with (100) plane assumed to be the growth plane. The regime I --> II --> III transition is accompanied by a morphological transition from elliptical-shaped structure to banded spherulite and then non-banded spherulite. The development of morphology during isothermal and non-isothermal processes shows a good agreement.
Resumo:
Nonisothermal melt crystallization kinetics of PEDEKmK linked by meta-phenyl and biphenyl was investigated by differential scanning calorimetry (DSC). A convenient and reasonable kinetic approach was used to describe the nonisothermal melt crystallization behavior, and its applicability was verified when the modified Avrami analysis by the Jeziorny and Ozawa equation were applied to the crystallization process. The crystallization activation energy was estimated to be -219 kJ/mol by Kissinger method while crystallizing from the PEDEKmK melt nonisothermally. These observed crystallization characteristics were compared to those of the other members of poly(aryl ether ketone) family. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Analysis of the nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK) was performed by using differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could describe only the primary stage of nonisothermal crystallization of PEEKK. And, the Ozawa analysis, when applied to this polymer system, failed to describe its nonisothermal crystallization behavior. A new and convenient approach for the nonisothermal crystallization was proposed by combining the Avrami equation with the Ozawa equation. By evaluating the kinetic parameters in this approach, the crystallization behavior of PEEKK was analyzed. According to the Kissinger method, the activation energies were determined to be 189 and 328 kJ/mol for nonisothermal melt and cold crystallization, respectively.
Resumo:
The nonisothermal crystallization behavior and melting process of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide) (PEG) diblock copolymer in which the weight fraction of the PCL block is 0.80 has been studied by using differential scanning calorimetry (DSC). Only the PCL block is crystallizable, the PEO block with 0.20 weight fraction cannot crystallize. The kinetics of the PCL/PEO diblock copolymer under nonisothermal crystallization conditions has been analyzed by Ozawa's equation. The experimental data shows no agreement with Ozawa's theoretical predictions in the whole crystallization process, especially in the later stage. A parameter, kinetic crystallinity, is used to characterize the crystallizability of the PCL/PEO diblock copolymer. The amorphous and microphase separating PEO block has a great influence on the crystallization of the PCL block. It bonds chemically with the PCL block, reduces crystallization entropy, and provides nucleating sites for the PCL block crystallization. The existence of the PEO block leads to the occurrence of the two melting peaks of the PCL/PEO diblock copolymer during melting process after nonisothermal crystallization. The comparison of nonisothermal crystallization of the PCL/PEO diblock copolymer, PCL/PEO blend, and PCL and PEO homopolymers has been made. It showed a lower crystallinity of the PCL/PEO diblock copolymer than that of others and a faster crystallization rate of the PCL/PEO diblock copolymer than that of the PCL homopolymer, but a slower crystallization rate than that of the PCL/PEO blend. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Based on Jeziorny theory, the kinetics of phase transition of poly(ester-imide) has been determined under non-isothermal condition by using differential scanning calorimetry (DSC). Avrami exponent n, kinetic parameters G(c) and rate constant Z(c) were derived and discussed.
Resumo:
In this work, TG/DTG and DSC techniques were used to the determination of thermal behavior of prednicarbate alone and associated with glyceryl stearate excipient ( 1: 1 physical mixture). TG/DTG curves obtained for the binary mixture showed a reduction of approximately 37 degrees C to the thermal stability of drug (T(dm/dt-0) (Max)(DTG)). The disappearance of stretching band at 1280 cm(-1) (nu(as) C-O, carbonate group) and the presence of streching band with less intensity at 1750 cm(-1) (nu(s) C-O, ester group) in IR spectrum obtained to the binary mixture submitted at 220 degrees C, when compared with IR spectrum of drug submitted to the same temperature, confirmed the chemical interaction between these substances due to heating. Kinetics parameters of decomposition reaction of prednicarbate were obtained using isothermal (Arrhenius equation) and non-isothermal (Ozawa) methods. The reduction of approximately 45% of activation energy value (E(a)) to the first step of thermal decomposition reaction of drug in the 1:1 (mass/mass) physical mixture was observed by both kinetics methods.
Resumo:
In this work have been studied the preparation, characterization and kinetic study of decomposition of the polymerizing agent used in the synthesis under non-isothermal condition ceramics PrMO3 of general formula (M = Co and Ni). These materials were obtained starting from the respective metal nitrates, as a cations source, and making use of gelatin as polymerizing agent. The powders were calcined at temperatures of 500°C, 700°C and 900°C and characterized by X-ray Diffraction (XRD), Thermogravimetric Analysis (TG / DTG/ DTA), Infrared Spectroscopy (FTIR), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was detected in all the X-rays patterns. In the infrared spectroscopy observed the oxide formation as the calcination temperature increases with the appearance of the band metal - oxygen. The images of SEM revealed uniform distribution for the PrCoO3 and particles agglomerated as consequence of particle size for PrNiO3. From the data of thermal analysis, the kinetics of decomposition of organic matter was employed using the kinetics methods called Model Free Kinetics and Flynn and Wall, in the heating ratios 10, 20 and 30° C.min-1 between room temperature and 700°C. Finally, been obtained the values of activation energy for the region of greatest decomposition of organic matter in samples that were determined by the degree of conversion (α)