985 resultados para Noise signal
Resumo:
We analyze the consequences that the choice of the output of the system has in the efficiency of signal detection. It is shown that the output signal and the signal-to-noise ratio (SNR), used to characterize the phenomenon of stochastic resonance, strongly depend on the form of the output. In particular, the SNR may be enhanced for an adequate output.
Resumo:
We show that external fluctuations induce excitable behavior in a bistable spatially extended system with activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excitable pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous nucleation of pulses and synchronized firing.
Resumo:
We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.
Resumo:
The Wigner higher order moment spectra (WHOS)are defined as extensions of the Wigner-Ville distribution (WD)to higher order moment spectra domains. A general class oftime-frequency higher order moment spectra is also defined interms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to theproperties of WHOS which are, in fact, extensions of the properties of the WD. Discrete time and frequency Wigner higherorder moment spectra (DTF-WHOS) distributions are introduced for signal processing applications and are shown to beimplemented with two FFT-based algorithms. One applicationis presented where the Wigner bispectrum (WB), which is aWHOS in the third-order moment domain, is utilized for thedetection of transient signals embedded in noise. The WB iscompared with the WD in terms of simulation examples andanalysis of real sonar data. It is shown that better detectionschemes can be derived, in low signal-to-noise ratio, when theWB is applied.
Resumo:
In this paper we show how a nonlinear preprocessing of speech signal -with high noise- based on morphological filters improves the performance of robust algorithms for pitch tracking (RAPT). This result happens for a very simple morphological filter. More sophisticated ones could even improve such results. Mathematical morphology is widely used in image processing and has a great amount of applications. Almost all its formulations derived in the two-dimensional framework are easily reformulated to be adapted to one-dimensional context
Resumo:
OBJECTIVES: To compare physiological noise contributions in cerebellar and cerebral regions of interest in high-resolution functional magnetic resonance imaging (fMRI) data acquired at 7T, to estimate the need for physiological noise removal in cerebellar fMRI. MATERIALS AND METHODS: Signal fluctuations in high resolution (1 mm isotropic) 7T fMRI data were attributed to one of the following categories: task-induced BOLD changes, slow drift, signal changes correlated with the cardiac and respiratory cycles, signal changes related to the cardiac rate and respiratory volume per unit of time or other. [Formula: see text] values for all categories were compared across regions of interest. RESULTS: In this high-resolution data, signal fluctuations related to the phase of the cardiac cycle and cardiac rate were shown to be significant, but comparable between cerebellar and cerebral regions of interest. However, respiratory related signal fluctuations were increased in the cerebellar regions, with explained variances that were up to 80 % higher than for the primary motor cortex region. CONCLUSION: Even at a millimetre spatial resolution, significant correlations with both cardiac and respiratory RETROICOR components were found in all healthy volunteer data. Therefore, physiological noise correction is highly likely to improve the temporal signal-to-noise ratio (SNR) for cerebellar fMRI at 7T, even at high spatial resolution.
Resumo:
NlmCategory="UNASSIGNED">A version of cascaded systems analysis was developed specifically with the aim of studying quantum noise propagation in x-ray detectors. Signal and quantum noise propagation was then modelled in four types of x-ray detectors used for digital mammography: four flat panel systems, one computed radiography and one slot-scan silicon wafer based photon counting device. As required inputs to the model, the two dimensional (2D) modulation transfer function (MTF), noise power spectra (NPS) and detective quantum efficiency (DQE) were measured for six mammography systems that utilized these different detectors. A new method to reconstruct anisotropic 2D presampling MTF matrices from 1D radial MTFs measured along different angular directions across the detector is described; an image of a sharp, circular disc was used for this purpose. The effective pixel fill factor for the FP systems was determined from the axial 1D presampling MTFs measured with a square sharp edge along the two orthogonal directions of the pixel lattice. Expectation MTFs were then calculated by averaging the radial MTFs over all possible phases and the 2D EMTF formed with the same reconstruction technique used for the 2D presampling MTF. The quantum NPS was then established by noise decomposition from homogenous images acquired as a function of detector air kerma. This was further decomposed into the correlated and uncorrelated quantum components by fitting the radially averaged quantum NPS with the radially averaged EMTF(2). This whole procedure allowed a detailed analysis of the influence of aliasing, signal and noise decorrelation, x-ray capture efficiency and global secondary gain on NPS and detector DQE. The influence of noise statistics, pixel fill factor and additional electronic and fixed pattern noises on the DQE was also studied. The 2D cascaded model and decompositions performed on the acquired images also enlightened the observed quantum NPS and DQE anisotropy.
Resumo:
This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.
Resumo:
This thesis addresses one of the emerging topics in Sonar Signal Processing.,viz.the implementation of a target classifier for the noise sources in the ocean, as the operator assisted classification turns out to be tedious,laborious and time consuming.In the work reported in this thesis,various judiciously chosen components of the feature vector are used for realizing the newly proposed Hierarchical Target Trimming Model.The performance of the proposed classifier has been compared with the Euclidean distance and Fuzzy K-Nearest Neighbour Model classifiers and is found to have better success rates.The procedures for generating the Target Feature Record or the Feature vector from the spectral,cepstral and bispectral features have also been suggested.The Feature vector ,so generated from the noise data waveform is compared with the feature vectors available in the knowledge base and the most matching pattern is identified,for the purpose of target classification.In an attempt to improve the success rate of the Feature Vector based classifier,the proposed system has been augmented with the HMM based Classifier.Institutions where both the classifier decisions disagree,a contention resolving mechanism built around the DUET algorithm has been suggested.
Resumo:
The standard models for statistical signal extraction assume that the signal and noise are generated by linear Gaussian processes. The optimum filter weights for those models are derived using the method of minimum mean square error. In the present work we study the properties of signal extraction models under the assumption that signal/noise are generated by symmetric stable processes. The optimum filter is obtained by the method of minimum dispersion. The performance of the new filter is compared with their Gaussian counterparts by simulation.
Resumo:
Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works
Resumo:
This paper reviews a study to examine signal detection in the auditory system.
Resumo:
A highly stable microvolt amplifier for use with atmospheric broadband thermopile radiometers is described. The amplifier has a nominal gain of 500, for bipolar input signals in the range +/- 10 mV from a floating source. The noise level at the input is less than 5 mu V (at 100 k Omega input impedance), permitting instantaneous diffuse solar radiation measurements to 0.5 W m(-2) resolution with 12 bit analog to digital conversion. The temperature stability of gain is better than 5 ppm/degrees C (-4 to 20 degrees C). Averaged over a decade of use, the long term drift of the amplifier gain is less than similar to 0.02%/yr. As well as radiometers measuring solar and terrestrial radiations, the amplifier has also been successfully used with low level signals from thermocouples and ground heat flux plates.
Resumo:
Background: Inadvertent drilling on the ossicular chain is one of the causes of sensorineural hearing loss (HL) that may follow tympanomastoid surgery. A high-frequency HL is most frequently observed. It is speculated that the HL is a result of vibration of the ossicular chain resembling acoustic noise trauma. It is generally considered that using a large cutting burr is more likely to cause damage than a small diamond burr. Aim: The aim was to investigate the equivalent noise level and its frequency characteristics generated by drilling onto the short process of the incus in fresh human temporal bones. Methods and Materials: Five fresh cadaveric temporal bones were used. Stapes displacement was measured using laser Doppler vibrometry during short drilling episodes. Diamond. and cutting burrs of different diameters were used. The effect of the drilling on stapes footplate displacement was compared with that generated by an acoustic signal. The equivalent noise level (dB sound pressure level equivalent [SPL eq]) was thus calculated. Results: The equivalent noise levels generated ranged from 93 to 125 dB SPL eq. For a 1-mm cutting burr, the highest equivalent noise level was 108 dB SPL eq, whereas a 2.3-mm cutting burr produced a maximal level of 125 dB SPL eq. Diamond burrs generated less noise than their cutting counterparts, with a 2.3-mm diamond burr producing a highest equivalent noise level of 102, dB SPL eq. The energy of the noise increased at the higher end of the frequency spectrum, with a 2.3-mm cutting burr producing a noise level of 105 dB SPL eq at 1 kHz and 125 dB SPL eq at 8 kHz. In contrast, the same sized diamond burr produced 96 dB SPL eq at 1 kHz and 99 dB at 8 kHz. Conclusion:This study suggests that drilling on the ossicular chain can produce vibratory force that is analogous with noise levels known to produce acoustic trauma. For the same type of burr, the larger the diameter, the greater the vibratory force, and for the same size of burr, the cutting burr creates more vibratory force than the diamond burr. The cutting burr produces greater high-frequency than lower-frequency vibratory energy.
OFDM joint data detection and phase noise cancellation based on minimum mean square prediction error
Resumo:
This paper proposes a new iterative algorithm for orthogonal frequency division multiplexing (OFDM) joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the relatively less studied problem of "overfitting" such that the iterative approach may converge to a trivial solution. Specifically, we apply a hard-decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the PHN, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical Simulations are also given to verify the proposed algorithm. (C) 2008 Elsevier B.V. All rights reserved.