975 resultados para Nile River watershed
Resumo:
One of the most important natural resources for sustaining human life, water, has been losing the basic requirements of quality and quantity sufficient enough to attend the population due to water contamination'problems, often caused by human beings themselves. Because of this, the sources of this resource are often located in remote places of the natural environment to ensure the quality of the water. However, when urban expansion began to occupy these areas, which were once regarded as distant, environmental pollution problems began to occur due to occupation of the land without planning. Based on this occurrence, this study aims to propose environmental zoning for the Maxaranguape river watershed in order to protect its water resources. This is important because this river can serve as a source of supply for the metropolitan area of Natal, the capital of Rio Grande do Norte. In accordance to this proposition, the model of natural soil loss vulnerability (CREPANI et al., 2001), the model of aquifer pollution vulnerability (FOSTER et al., 2006), and the legal incompatibility map (CREPANI et al., 2001) were used to delimit the zones. All this was done with Geographic Information System (GIS) and also created a geographic database update of the basin. The results of the first model mentioned indicated that 63.67% of the basin was classified as moderately stable / vulnerable, 35.66% as moderately vulnerable, and 0.67% as vulnerable. The areas with high vulnerability degree correspond with sand dunes and river channels areas. The second model indicated that 2.84% of the basin has low vulnerability, 70.27%) has median vulnerability, and 26.76% and 0.13% has high vulnerability and extreme vulnerability, respectively. The areas with the highest vulnerability values also refer to part of the sand dunes and river channels besides other areas such as Pureza urban area. The legal incompatibility map indicated that the basin has 85.02 km2 of Permanent Protection Area (PPA) and 14.62% of this area has some incongruity of use. Based on these results it was possible to draw three main zones: Protection and Sustainable Use Zone (PSUZ), Protection and Environmental Restoration Zone (PERZ) and Environmental Control Zone, which are divided into A, B and C. The PSUZ refer to the coastal areas of the basin, where the sand dunes are located. These sites should be areas of environmental protection and of sustainable urban expansion. The ZPRA refer to river channels, which are in high need of rehabilitation. The third zone corresponds to the rest of the basin which should have, in general, the mapping of possible sources of contamination for further control on the use and occupation of the river
Resumo:
The Pitimbu River Watershed (PRW), belonging to Potiguar capital metropolitan area, State of Rio Grande do Norte, contributes, among other purposes, to human using and animal watering. This watershed is extremely important because, besides filling up with freshwater approximately 30% of the south part of Natal (South, East and West Zones), contributes to the river shore ecosystem equilibrium. Face to the current conjuncture, this study aims to evaluate the urban development dynamics in the PRW, applying Cellular Automata as a modeling instrument, and to simulate future urban scenarios, between 2014 and 2033, using the simulation program SLEUTH. In the calibration phase, urban spots for 1 984, 1992, 2004 and 2013 years were used, with resolution from 100 meters. After the simulation, it was found a predominance of organic growth, expanding the BHRP from existing urban centers. The spontaneous growth occurred through the fullest extent of the watershed, however the probability of effective growth should not exceed 21%. It was observed that, there was a 68% increase for the period between 2014 and 2033, corresponding to an expansion area of 1,778 ha. For 2033, the source of Pitimbu River area and the Jiqui Lake surroundings will increase more than 78%. Finally, it was seen an exogenous urban growth tendency in the watershed (outside-in). As a result of this growth, hydraulics resources will become scarcer
Resumo:
The vast hidric wealth of Brazil gets its watersheds more susceptible to impacts that compromise the water quality, affecting the ecosystem stability of aquatic environments. The decrease in the quality of water resources also results in a decrease of its multiple uses, especially in tourist areas of the coast, where the continuous flow of people to these sites increases even further the probability of inappropriate behavior of both tourists and local residents. Studies regarding the microbiological communities are still scarce, especially on the free-living protozoa that play unique roles in the food chain of aquatic ecosystems. Due to the large role played by this group of microorganisms in aquatic environments, the present study aimed at identifying the genus and species of free-living protozoa present in two sections of the Pium River, east coast of Rio Grande do Norte, making an association between the its occurrence and trophic conditions of the environment in which they are, also checking the bioindicator capacity of these organisms in water quality. It also aimed to conduct a survey with students to identify the main difficulties regarding the knowledge of free-living protozoa and hydric transmission diseases in two public schools near the river studied in the Pium district, county of Parnamirim. The survey was analyzed by means of questionnaires at both schools. Students identified several activities developed Pium river, highlighting its multifunctionality and importance to the region. A total of 76 taxa of free-living protozoa was recorded, of these, 33 were ciliates, 19 flagellates and 24 sarcodia. The spatial and temporal patterns of these organisms to both points studied revealed the bioindicator potentiality of some effective species identified. However, knowledge about the free-living protozoa proved quite lagged, presenting misconceptions that show them as pathogenic organisms exclusively, totally disregarding their ecological role. In order to remedy the flaws existing in students in relation to the functional role of protozoa, workshops were planned on these microorganisms while also addressing issues related to hydric transmission diseases through lectures, recreational activities and interactive presentations. These practical activities of Science Education had the goal of bringing students the context of local water resources, aiming to promote a greater clarification regarding of the functional role of free-living protozoa in aquatic environments
Resumo:
There are many applications coming from geomorphological studies and their different constitutive and inter related elements, to the implementation of public politics of planning and environmental management. This search presents an analysis of the environmental fragility of the watershed of Seridó River, situated between the states of Paraíba and Rio Grande do Norte (Brazil), including the identification of possible unstable areas. It is based on the methodological approach of Ecodynamics of the French researcher J. Tricart (1977) and on the operalisation proposal advocated by the Brazilian J. Ross (1994), related to the Potential and Emerging Ecodynamic Units, grounded in the Relief s Dissection Index or the topographic roughness, soil, rainfall and land use/vegetal cover. Under a quantitative perspective, the results obtained from the analysis of the watershed can be divided into classes of potential fragility: around 2.613,0 km² of low intensity, 5.188,4 km² of medium intensity and 2.585,5 km² of high intensity. Concerning the emerging fragility, the results are close to 2.212,0 km² of low intensity, 6.191,23 km² of medium intensity and 2.062,34 km² of high intensity. In the case of the watershed in question, the environmental degradation is particularly effective in the areas more dissected, where the ecological conditions, in synergy the environmental degradation, prevent the regeneration of vegetation when arises an opportunity for the (re)establishment of its equilibrium tenuous. The collected data is relevant for the territorial and environmental planning of the watershed, once we can still verify a close association of the cities on the central area of desertification with the areas of high environmental instability/fragility. This is an important tool to the understanding of the potential susceptibility of the natural and anthropic environments related to the advance and/or intensification of the erosion process, rock falls, mass movements, among other phenomena inside the potential unstable areas. From this perspective, the continuity of this research becomes extremely important to the understanding and arrangement of the process, together with the engendering and sustainability of the system in its totality; in narrow correlation because their potentialities, constraints and alternatives on Seridó River watershed, and in all the semi-arid region with similar characteristics
Resumo:
Riparian forest restoration projects in the Tropics are complex, demanding longterm research, continuous human efforts and correct use of financial resources. This paper presents an approach to rank priority areas for riparian forest restoration on the upper section of the Pardo River watershed, in São Paulo, Brazil, using remote sensing and GIS techniques. Pardo River watershed is specially important, since it is the major source of drinking water supply for the region and water for domestic and industrial use within Botucatu and surrounding. Results indicated that riparian restoration should involve 81,27% of the protected area and could be made in three phases, allocating resources according to a priority scale.
Resumo:
The object of this work was to make a morphometric characterization of the Bobo river watershed in the Nariño department in Colombia. A map was created from topographical maps (1:25.000 scale) using the drainage network and the limit of each 2nd order microbasin as database. Dimensional, drainage network and relief morphometric parameters were evaluated for a later hy-drological study. The drainage area was 224.97 km2, having a 71.31 km perimeter. The Bobo river watershed is considered to be 6th order and has 176 2nd order drainage channels, 34 3rd order drainage channels, 9 4th order drainage channels and 3 5th order drainage channels. Average drainage density is 3.71km/km2, reflecting its high density, having strong, dissected geological formation. The area has a typical Andean land-use pattern, having native wooded vegetation, traditional transitory potato and vegetable growing predominating.
Resumo:
The present work had the objective to elaborate the map of land use and vegetation covering from Tijuco river watershed, Ituiutaba-MG, based on digital images obtained by satellite from CBERS 2, through automatic delimitation of permanent preservation areas followed by identification of land use conflict based on the Brazilian Forest Code (Law no 4771/1965) and National Council of Environment's Resolution no 303/02. This paper analyzes, through quantitative parameters and the use of Geographic Information System, the maintenance tracks of width recommended by the legislation for permanent preservation areas over water bodies. The results showed a deficit of conserved areas along the riverbanks of 2334 ha that are not in compliance with the legislation. The pasture occupies unduly 0.97% of the area of the basin in the permanent preservation areas at the riverbanks, while agriculture occupies 0.38%.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Engenharia Civil e Ambiental - FEB
Resumo:
Pós-graduação em História - FCLAS
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)