876 resultados para Networked control systems
Resumo:
CAD software can be structured as a set of modular 'software tools' only if there is some agreement on the data structures which are to be passed between tools. Beyond this basic requirement, it is desirable to give the agreed structures the status of 'data types' in the language used for interactive design. The ultimate refinement is to have a data management capability which 'understands' how to manipulate such data types. In this paper the requirements of CACSD are formulated from the point of view of Database Management Systems. Progress towards meeting these requirements in both the DBMS and the CACSD community is reviewed. The conclusion reached is that there has been considerable movement towards the realisation of software tools for CACSD, but that this owes more to modern ideas about programming languages, than to DBMS developments. The DBMS field has identified some useful concepts, but further significant progress is expected to come from the exploitation of concepts such as object-oriented programming, logic programming, or functional programming.
Resumo:
in the last 10 years many designs and trial implementations of holonic manufacturing systems have been reported in the literature. Few of these have resulted in any industrial take up of the approach and part of this lack of adoption might be attributed to a shortage of evaluations of the resulting designs and implementations and their comparison with more conventional approaches. This paper proposes a simple approach for evaluating the effectiveness of a holonic system design, with particular focus on the ability of the system to support reconfiguration (in the face of change). A case study relating to a laboratory assembly system is provided to demonstrate the evaluation approach. Copyright © 2005 IFAC.
Resumo:
This paper will provide a rationale for developing control systems based on the availability of automated identification (Auto ID) information provision. Much of the Auto-ID research has to date focussed on developing the essential infrastructure for dynamically extracting, networking and storing product data. These developments will help to revolutionise the accuracy, quality and timeliness of data acquired by Business Information Systems and should lead to major cost savings and performance improvements as a result. This paper introduces an additional phase of Auto ID research and development in which the nature of control system decisions is reconsidered in the light of the availability of ubiquitous, unique, item-level information. The paper will: (i) Indicate why the availability of ubiquitous, unique, item-level data can enable enhanced and fundamentally different control approaches and highlight potential benefits from control systems incorporating this Auto ID data (ii) Demonstrate what is required to develop control systems based around the availability of Auto ID data. (iii) Outline the research challenges in determining how such systems will be developed.
Resumo:
While a large amount of research over the past two decades has focused on discrete abstractions of infinite-state dynamical systems, many structural and algorithmic details of these abstractions remain unknown. To clarify the computational resources needed to perform discrete abstractions, this paper examines the algorithmic properties of an existing method for deriving finite-state systems that are bisimilar to linear discrete-time control systems. We explicitly find the structure of the finite-state system, show that it can be enormous compared to the original linear system, and give conditions to guarantee that the finite-state system is reasonably sized and efficiently computable. Though constructing the finite-state system is generally impractical, we see that special cases could be amenable to satisfiability based verification techniques. ©2009 IEEE.
Resumo:
Networked control systems (NCSs) have attracted much attention in the past decade due to their many advantages and growing number of applications. Different than classic control systems, resources in NCSs, such as network bandwidth and communication energy, are often limited, which degrade the closed-loop system performance and may even cause the system to become unstable. Seeking a desired trade-off between the closed-loop system performance and the limited resources is thus one heated area of research. In this paper, we analyze the trade-off between the sensor-to-controller communication rate and the closed-loop system performance indexed by the conventional LQG control cost. We present and compare several sensor data schedules, and demonstrate that two event-based sensor data schedules provide better trade-off than an optimal offline schedule. Simulation examples are provided to illustrate the theories developed in the paper. © 2012 AACC American Automatic Control Council).
Resumo:
Environmental Control Systems (ECS), enable people with high cervical Spinal Cord Injury (high SCI) to control and access everyday electronic devices. In Ireland, however, access for those who might benefit from ECS is limited. This study used a qualitative approach to explore the insider experience of an ECS starter-pack developed by the author, an occupational therapist. The primary research questions: what is it really like to live with ECS, and what does it mean to live with ECS, were explored using a phenomenological methodology conducted in three phases. In Phase 1 fifteen people with high SCI met twice in four focus groups to discuss experiences and expectations of ECS. Thematic analysis (Krueger & Casey, 2000), influenced by the psychological phenomenological approach (Creswell, 1998), yielded three categories of rich, practical, phenomenological findings: ECS Usage and utility; ECS Expectations and The meaning of living with ECS. Phase 1 findings informed Phase 2 which consisted of the development of a generic electronic assistive technology pack (GrEAT) that included commercially available constituents as well as short instructional videos and an information booklet. This second phase culminated in a one-person, three-week pilot trial. Phase 3 involved a six person, 8-week trial of the GrEAT, followed by individual in-depth interviews. Interpretative Phenomenological Analysis IPA (Smith, Larkin & Flowers, 2009), aided by computer software ATLAS.ti and iMindmap, guided data analysis and identification of themes. Getting used to ECS, experienced as both a hassle and engaging, resulted in participants being able to Take back a little of what you have lost, which involved both feeling enabled and reclaiming a little doing. The findings of this study provide substantial insights into what it is like to live with ECS and the meanings attributed to that experience. Several practical, real world implications are discussed.
Resumo:
© 2015 IEEE.We consider a wireless control architecture with multiple control loops over a shared wireless medium. A scheduler observes the random channel conditions that each control system experiences over the shared medium and opportunistically selects systems to transmit at a set of non-overlapping frequencies. The transmit power of each system also adapts to channel conditions and determines the probability of successfully receiving and closing the loop. We formulate the optimal design of channel-aware scheduling and power allocation that minimize the total power consumption while meeting control performance requirements for all systems. In particular, it is required that for each control system a given Lyapunov function decreases at a specified rate in expectation over the random channel conditions. We develop an offline algorithm to find the optimal communication design, as well as an online protocol which selects scheduling and power variables based on a random observed channel sequence and converges almost surely to the optimal operating point. Simulations illustrate the power savings of our approach compared to other non-channel-aware schemes.
Resumo:
This paper provides an overview of the current field in wireless networks for monitoring and control. Alternative wireless technologies are introduced, together with current typical industrial applications. The focus then shifts to wireless Ethernet and the specialised requirements for wireless networked control systems (WNCS) are discussed. This is followed by a brief look at some current WNCS research, including reduced communication control.