976 resultados para Network Connectivity


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Expectation is a very potent pain modulator in both humans and animals. There is evidence that pain transmission neurons are modulated by expectation preceding painful stimuli. Nonetheless, few studies have examined the influence of pain expectation on the pain-related neuronal activity and the functional connectivity within the central nociceptive network. Results: This study used a tone-laser conditioning paradigm to establish the pain expectation in rats, and simultaneously recorded the anterior cingulate cortex (ACC), the medial dorsal thalamus (MD), and the primary somatosensory cortex (SI) to investigate the effect of pain expectation on laser-induced neuronal responses. Cross-correlation and partial directed coherence analysis were used to determine the functional interactions within and between the recorded areas during nociceptive transmission. The results showed that under anticipation condition, the neuronal activity to the auditory cue was significantly increased in the ACC area, whereas those to actual noxious stimuli were enhanced in all the recorded areas. Furthermore, neuronal correlations within and between these areas were significantly increased under conditions of expectation compared to those under non-expectation conditions, indicating an enhanced synchronization of neural activity within the pain network. In addition, information flow from the medial (ACC and MD) to the lateral (SI cortex) pain pathway increased, suggesting that the emotion-related neural circuits may modulate the neuronal activity in the somatosensory pathway during nociceptive transmission. Conclusion: These results demonstrate that the nociceptive processing in both medial and lateral pain systems is modulated by the expectation of pain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article focuses on the identification of the number of paths with different lengths between pairs of nodes in complex networks and how these paths can be used for characterization of topological properties of theoretical and real-world complex networks. This analysis revealed that the number of paths can provide a better discrimination of network models than traditional network measurements. In addition, the analysis of real-world networks suggests that the long-range connectivity tends to be limited in these networks and may be strongly related to network growth and organization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures-search information and path transitivity-which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using combined emotional stimuli, combining photos of faces and recording of voices, we investigated the neural dynamics of emotional judgment using scalp EEG recordings. Stimuli could be either combioned in a congruent, or a non-congruent way.. As many evidences show the major role of alpha in emotional processing, the alpha band was subjected to be analyzed. Analysis was performed by computing the synchronization of the EEGs and the conditions congruent vs. non-congruent were compared using statistical tools. The obtained results demonstrate that scalp EEG ccould be used as a tool to investigate the neural dynamics of emotional valence and discriminate various emotions (angry, happy and neutral stimuli).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cultures of cortical neurons grown on multielectrode arrays exhibit spontaneous, robust and recurrent patterns of highly synchronous activity called bursts. These bursts play a crucial role in the development and topological selforganization of neuronal networks. Thus, understanding the evolution of synchrony within these bursts could give insight into network growth and the functional processes involved in learning and memory. Functional connectivity networks can be constructed by observing patterns of synchrony that evolve during bursts. To capture this evolution, a modelling approach is adopted using a framework of emergent evolving complex networks and, through taking advantage of the multiple time scales of the system, aims to show the importance of sequential and ordered synchronization in network function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Functional brain imaging studies have shown abnormal neural activity in individuals recovered from anorexia nervosa (AN) during both cognitive and emotional task paradigms. It has been suggested that this abnormal activity which persists into recovery might underpin the neurobiology of the disorder and constitute a neural biomarker for AN. However, no study to date has assessed functional changes in neural networks in the absence of task-induced activity in those recovered from AN. Therefore, the aim of this study was to investigate whole brain resting state functional connectivity in nonmedicated women recovered from anorexia nervosa. Functional magnetic resonance imaging scans were obtained from 16 nonmedicated participants recovered from anorexia nervosa and 15 healthy control participants. Independent component analysis revealed functionally relevant resting state networks. Dual regression analysis revealed increased temporal correlation (coherence) in the default mode network (DMN) which is thought to be involved in self-referential processing. Specifically, compared to healthy control participants the recovered anorexia nervosa participants showed increased temporal coherence between the DMN and the precuneus and the dorsolateral prefrontal cortex/inferior frontal gyrus. The findings support the view that dysfunction in resting state functional connectivity in regions involved in self-referential processing and cognitive control might be a vulnerability marker for the development of anorexia nervosa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new complex network model is proposed which is founded on growth, with new connections being established proportionally to the current dynamical activity of each node, which can be understood as a generalization of the Barabasi-Albert static model. By using several topological measurements, as well as optimal multivariate methods (canonical analysis and maximum likelihood decision), we show that this new model provides, among several other theoretical kinds of networks including Watts-Strogatz small-world networks, the greatest compatibility with three real-world cortical networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the firing rate properties of a cellular automaton model for a neuronal network with chemical synapses. We propose a simple mechanism in which the nonlocal connections are included, through electrical and chemical synapses. In the latter case, we introduce a time delay which produces self-sustained activity. Nonlocal connections, or shortcuts, are randomly introduced according to a specified connection probability. There is a range of connection probabilities for which neuron firing occurs, as well as a critical probability for which the firing ceases in the absence of time delay. The critical probability for nonlocal shortcuts depends on the network size according to a power-law. We also compute the firing rate amplification factor by varying both the connection probability and the time delay for different network sizes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using functional magnetic resonance imaging during a verbal memory task, we investigated correlations of signal fluctuations within the hippocampus and ipsilateral frontal as well as temporal areas in temporal lobe epilepsy patients. Declarative memory abilities were additionally examined before and after temporal lobe epilepsy surgery. A significant difference exists in functional connectivity between patients whose mnemonic functions deteriorated and those who remained stable or improved. Univariate analyses showed significantly higher preoperative coupling between the hippocampus and Brodmann area 22 for the group that decreased in verbal learning. We suggest greater coupling to reflect higher functional network integrity. Postoperatively reduced learning ability in patients with higher preoperative coupling underlines the importance of hippocampal interaction with cortical areas for successful memory formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223–233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To investigate the dynamics of communication within the primary somatosensory neuronal network. Methods: Multichannel EEG responses evoked by median nerve stimulation were recorded from six healthy participants. We investigated the directional connectivity of the evoked responses by assessing the Partial Directed Coherence (PDC) among five neuronal nodes (brainstem, thalamus and three in the primary sensorimotor cortex), which had been identified by using the Functional Source Separation (FSS) algorithm. We analyzed directional connectivity separately in the low (1-200. Hz, LF) and high (450-750. Hz, HF) frequency ranges. Results: LF forward connectivity showed peaks at 16, 20, 30 and 50. ms post-stimulus. An estimate of the strength of connectivity was modulated by feedback involving cortical and subcortical nodes. In HF, forward connectivity showed peaks at 20, 30 and 50. ms, with no apparent feedback-related strength changes. Conclusions: In this first non-invasive study in humans, we documented directional connectivity across subcortical and cortical somatosensory pathway, discriminating transmission properties within LF and HF ranges. Significance: The combined use of FSS and PDC in a simple protocol such as median nerve stimulation sheds light on how high and low frequency components of the somatosensory evoked response are functionally interrelated in sustaining somatosensory perception in healthy individuals. Thus, these components may potentially be explored as biomarkers of pathological conditions. © 2012 International Federation of Clinical Neurophysiology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

IMPORTANCE Genome-wide association studies (GWASs) indicate that single-nucleotide polymorphisms in the CACNA1C and ANK3 genes increase the risk for bipolar disorder (BD). The genes influence neuronal firing by modulating calcium and sodium channel functions, respectively. Both genes modulate ?-aminobutyric acid-transmitting interneuron function and can thus affect brain regional activation and interregional connectivity. OBJECTIVE To determine whether the genetic risk for BD associated with 2 GWAS-supported risk single-nucleotide polymorphisms at CACNA1C rs1006737 and ANK3 rs10994336 is mediated through changes in regional activation and interregional connectivity of the facial affect-processing network. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional functional magnetic resonance imaging study at a research institute of 41 euthymic patients with BD and 46 healthy participants, all of British white descent. MAIN OUTCOMES AND MEASURES Blood oxygen level-dependent signal and effective connectivity measures during the facial affect-processing task. RESULTS In healthy carriers, both genetic risk variants were independently associated with increased regional engagement throughout the facial affect-processing network and increased effective connectivity between the visual and ventral prefrontal cortical regions. In contrast, BD carriers of either genetic risk variant exhibited pronounced reduction in ventral prefrontal cortical activation and visual-prefrontal effective connectivity. CONCLUSIONS AND RELEVANCE Our data demonstrate that the effect of CACNA1C rs1006737 and ANK3 rs10994336 (or genetic variants in linkage disequilibrium) on the brain converges on the neural circuitry involved in affect processing and provides a mechanism linking BD to genome-wide genetic risk variants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The organizational and architectural configuration of white matter pathways connecting brain regions has ramifications for all facets of the human condition, including manifestations of incipient neurodegeneration. Although diffusion tensor imaging (DTI) has been used extensively to visualize white matter connectivity, due to the widespread presence of crossing fibres, the lateral projections of the corpus callosum are not normally detected using this methodology. Detailed knowledge of the transcallosal connectivity of the human cortical motor network has therefore remained elusive. We employed constrained spherical deconvolution (CSD) tractography - an approach that is much less susceptible to the influence of crossing fibres, in order to derive complete in-vivo characterizations of white matter pathways connecting specific motor cortical regions to their counterparts and other loci in the opposite hemisphere. The revealed patterns of connectivity closely resemble those derived from anatomical tracing in primates. It was established that dorsal premotor cortex (PMd) and supplementary motor area (SMA) have extensive interhemispheric connectivity - exhibiting both dense homologous projections, and widespread structural relations with every other region in the contralateral motor network. Through this in-vivo portrayal, the importance of non-primary motor regions for interhemispheric communication is emphasized. Additionally, distinct connectivity profiles were detected for the anterior and posterior subdivisions of primary motor cortex. The present findings provide a comprehensive representation of transcallosal white matter projections in humans, and have the potential to inform the development of models and hypotheses relating structural and functional brain connectivity.