871 resultados para Negative energy balance
Resumo:
Mode of access: Internet.
Resumo:
The present paper offers a methodological approach towards the estimation and definition of enthalpies constituting an energy balance around a fast pyrolysis experiment conducted in a laboratory scale fluid bed with a capacity of 1 kg/ h. Pure N2 was used as fluidization medium at atmospheric pressure and the operating temperature (∼500°C) was adjusted with electrical resistors. The biomass feedstock type that was used was beech wood. An effort was made to achieve a satisfying 92.5% retrieval of products (dry basis mass balance) with the differences mainly attributed to loss of some bio-oil constituents into the quenching medium, ISOPAR™. The chemical enthalpy recovery for bio-oil, char and permanent gases is calculated 64.6%, 14.5% and 7.1%, respectively. All the energy losses from the experimental unit into the environment, namely the pyrolyser, cooling unit etc. are discussed and compared to the heat of fast pyrolysis that was calculated at 1123.5 kJ per kg of beech wood. This only represents 2.4% of the biomass total enthalpy or 6.5% its HHV basis. For the estimation of some important thermo-physical properties such as heat capacity and density, it was found that using data based on the identified compounds from the GC/MS analysis is very close to the reference values despite the small fraction of the bio-oil components detected. The methodology and results can help as a starting point for the proper design of fast pyrolysis experiments, pilot and/or industrial scale plants.
Resumo:
Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.
Resumo:
Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and regional freshwater management practices.
Resumo:
Peer reviewed
Resumo:
Near-surface air temperature is an important determinant of the surface energy balance of glaciers and is often represented by a constant linear temperature gradients (TGs) in models. Spatiotemporal variability in 2 m air temperature was measured across the debris-covered Miage Glacier, Italy, over an 89 d period during the 2014 ablation season using a network of 19 stations. Air temperature was found to be strongly dependent upon elevation for most stations, even under varying meteorological conditions and at different times of day, and its spatial variability was well explained by a locally derived mean linear TG (MG–TG) of −0.0088°C m−1. However, local temperature depressions occurred over areas of very thin or patchy debris cover. The MG–TG, together with other air TGs, extrapolated from both on- and off-glacier sites, were applied in a distributed energy-balance model. Compared with piecewise air temperature extrapolation from all on-glacier stations, modelled ablation, using the MG–TG, increased by <1%, increasing to >4% using the environmental ‘lapse rate’. Ice melt under thick debris was relatively insensitive to air temperature, while the effects of different temperature extrapolation methods were strongest at high elevation sites of thin and patchy debris cover.
Resumo:
Based on the relationship Zener parameter (Z=second-phase size/second-phase volume fraction) vs. calcite grain size (dg), second-phase controlled aggregates and microstructures that are weakly affected by second-phases are discriminated. The latter are characterized by large but constant grain sizes, high calcite grain boundary fractions and crystallographic preferred orientations (CPO), while calcite grain size and calcite grain boundary fraction decrease continuously and CPO weakens with decreasing Z in second-phase controlled microstructures. These observations suggest that second-phase controlled microstructures predominantly deform via granular flow because pinning of calcite grain boundaries reduces the efficiency of dynamic recrystallization favoring mass transfer processes and grain boundary sliding. In contrast, the balance of grain size reduction and growth by dynamic recrystallization maintains a steady state grain size in microstructures that are only weakly affected by second-phases promoting a predominance of dislocation creep. With increasing temperature, the relationship between Z and dg persists but the calcite grain size increases continuously. Based on microstructures, the energy of each modifying process is calculated and its relative contribution is compared with energies of the competing processes (surface energy, dragging energy, dynamic recrystallization energy). The steady state microstructures result from a temperature-dependent energy minimization procedure of the system.
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.
Resumo:
BACKGROUND:Tackling inequalities in overweight, obesity and related determinants has become a top priority for the European research and policy agendas. Although it has been established that such inequalities accumulate from early childhood onward, they have not been studied extensively in children. The current article discusses the results of an explorative analysis for the identification of inequalities in behaviours and their determinants between groups with high and low socio-economic status. METHODS: This study is part of the Epode for the Promotion of Health Equity (EPHE) evaluation study, the overall aim of which is to assess the impact and sustainability of EPODE methodology to diminish inequalities in childhood obesity and overweight. Seven community-based programmes from different European countries (Belgium, Bulgaria, France, Greece, Portugal, Romania, The Netherlands) participate in the EPHE study. In each of the communities, children aged 6-8 years participated, resulting in a total sample of 1266 children and their families. A parental self-administrated questionnaire was disseminated in order to assess the socio-economic status of the household, selected energy balance-related behaviours (1. fruit and vegetable consumption; 2. soft drink/ fruit juices and water consumption; 3. screen time and 4. sleep duration) of the children and associated family environmental determinants. The Mann-Whitney U test and Pearson's chi-square test were used to test differences between the low and high education groups. The country-specific median was chosen as the cut-off point to determine the educational level, given the different average educational level in every country. RESULTS: Children with mothers of relatively high educational level consumed fruits and vegetables more frequently than their peers of low socio-economic status. The latter group of children had a higher intake of fruit juices and/or soft drinks and had higher screen time. Parental rules and home availability were consistently different between the two socio-economic groups in our study in all countries. However we did not find a common pattern for all behaviours and the variability across the countries was large. CONCLUSIONS: Our findings are indicative of socio-economic inequalities in our samples, although the variability across the countries was large. The effectiveness of interventions aimed at chancing parental rules and behaviour on health inequalities should be studied.
Resumo:
Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season.