937 resultados para Naturally Acquired-immunity
Resumo:
Human eosinophils have been demonstrated to contain a multitude of cytokines and chemokines that exist pre-formed within these cells. This content of pre-formed cytokines, with diverse potential biologic activities, provides eosinophils with capabilities distinct from most other leukocytes. The localization of pre-formed cytokines within eosinophils is both within specific granules and associated with substantial numbers of morphologically distinct cytoplasmic vesicles. Stimulation for release of specific cytokines, such as IL-4, leads to a regulated signal transduction cascade, which is dependent on the formation of leukotriene C4 within eosinophils where it acts as an intracrine mediator. IL-4 release occurs selectively and is by means of vesicular transport. The capabilities of eosinophils not only to rapidly release pre-formed cytokines but also to differentially regulate which cytokines are released endow eosinophils with distinct abilities in innate and acquired immunity.
Resumo:
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.
Resumo:
Tumor-specific gene products, such as cancer/testis (CT) antigens, constitute promising targets for the development of T cell vaccines. Whereas CT antigens are frequently expressed in melanoma, their expression in colorectal cancers (CRC) remains poorly characterized. Here, we have studied the expression of the CT antigens MAGE-A3, MAGE-A4, MAGE-A10, NY-ESO-1 and SSX2 in CRC because of the presence of well-described HLA-A2-restricted epitopes in their sequences. Our analyses of 41 primary CRC and 14 metastatic liver lesions confirmed the low frequency of expression of these CT antigens. No increased expression frequencies were observed in metastatic tumors compared to primary tumors. Histological analyses of CRC samples revealed heterogeneous expression of individual CT antigens. Finally, evidence of a naturally acquired CT antigen-specific CD8(+) T cell response could be demonstrated. These results show that the expression of CT antigens in a subset of CRC patients induces readily detectable T cell responses.
Resumo:
The outcome of infection depends on multiple layers of immune regulation, with innate immunity playing a decisive role in shaping protection or pathogenic sequelae of acquired immunity. The contribution of pattern recognition receptors and adaptor molecules in immunity to malaria remains poorly understood. Here, we interrogate the role of the caspase recruitment domain-containing protein 9 (CARD9) signaling pathway in the development of experimental cerebral malaria (ECM) using the murine Plasmodium berghei ANKA infection model. CARD9 expression was upregulated in the brains of infected wild-type (WT) mice, suggesting a potential role for this pathway in ECM pathogenesis. However, P. berghei ANKA-infected Card9(-/-) mice succumbed to neurological signs and presented with disrupted blood-brain barriers similar to WT mice. Furthermore, consistent with the immunological features associated with ECM in WT mice, Card9(-/-) mice revealed (i) elevated levels of proinflammatory responses, (ii) high frequencies of activated T cells, and (iii) CD8(+) T cell arrest in the cerebral microvasculature. We conclude that ECM develops independently of the CARD9 signaling pathway.
Resumo:
Naturally acquired immune responses against human cancers often include CD8(+) T cells specific for the cancer testis antigen NY-ESO-1. Here, we studied T cell receptor (TCR) primary structure and function of 605 HLA-A*0201/NY-ESO-1(157-165)-specific CD8 T cell clones derived from five melanoma patients. We show that an important proportion of tumor-reactive T cells preferentially use TCR AV3S1/BV8S2 chains, with remarkably conserved CDR3 amino acid motifs and lengths in both chains. All remaining T cell clones belong to two additional sets expressing BV1 or BV13 TCRs, associated with alpha-chains with highly diverse VJ usage, CDR3 amino acid sequence, and length. Yet, all T cell clonotypes recognize tumor antigen with similar functional avidity. Two residues, Met-160 and Trp-161, located in the middle region of the NY-ESO-1(157-165) peptide, are critical for recognition by most of the T cell clonotypes. Collectively, our data show that a large number of alphabeta TCRs, belonging to three distinct sets (AVx/BV1, AV3/BV8, AVx/BV13) bind pMHC with equal antigen sensitivity and recognize the same peptide motif. Finally, this in-depth study of recognition of a self-antigen suggests that in part similar biophysical mechanisms shape TCR repertoires toward foreign and self-antigens.
Resumo:
Interleukin-18 (IL-18) plays an important role in innate and acquired immunity, in particular against intracellular pathogens. However, little is known about the microbial factors that trigger IL-18 secretion by dendritic cells (DCs). To determine the influence of bacterial virulence factors on the activation and release of IL-18, we infected human monocyte-derived DCs with virulence mutants of the facultative intracellular pathogen Salmonella typhimurium. Our results show that infection by S. typhimurium causes caspase-1-dependent activation of IL-18 and triggers the release of IL-18 in human DCs. The secretion of IL-18 by the DCs was closely correlated with the ability of the S. typhimurium strains to induce apoptosis. We demonstrate that activation and release of IL-18 are blocked by mutations in the Salmonella sipB gene, which encodes a virulence factor that activates caspase-1 to induce apoptosis. These findings indicate that the activation and release of IL-18 induced by bacterial virulence factors may represent one component of innate immunity against the intracellular bacteria.
Resumo:
Eumelanin and pheomelanin are the main endogenous pigments in animals and melanin-based coloration has multiple functions. Melanization is associated with major life-history traits, including immune and stress response, possibly because of pleiotropic effects of genes that control melanogenesis. The net effects on pheo- versus eumelanization and other life-history traits may depend on the antagonistic effects of the genes that trigger the biosynthesis of either melanin form. Covariation between melanin-based pigmentation and fitness traits enforced by pleiotropic genes has major evolutionary implications particularly for socio-sexual communication. However, evidence from non-model organisms in the wild is limited to very few species. Here, we tested the hypothesis that melanin-based coloration of barn swallow (Hirundo rustica) throat and belly feathers covaries with acquired immunity and activation of the hypothalamic-pituitary-adrenal (HPA) axis, as gauged by corticosterone plasma levels. Individuals of both sexes with darker brownish belly feathers had weaker humoral immune response, while darker males had higher circulating corticosterone levels only when parental workload was experimentally reduced. Because color of belly feathers depends on both eu- and pheomelanin, and its darkness decreases with an increase in the concentration of eu- relative to pheomelanin, these results are consistent with our expectation that relatively more eu- than pheomelanized individuals have better immune response and smaller activation of the HPA-axis. Covariation of immune and stress response arose for belly but not throat feather color, suggesting that any function of color as a signal of individual quality or of alternative life-history strategies depends on plumage region.
Resumo:
Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNbeta-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNbeta and IFNbeta-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1beta. Transcription of the Il1b gene was markedly impaired in TLR2(-/-) and MyD88(-/-) BMDM, whereas mature and secreted IL-1beta was massively reduced in NALP3(-/-) BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNbeta and IL-1beta by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity.
Resumo:
Avec plus de 100000 transplantations d'organes solides (TOS) par année dans le monde, la transplantation d'organes reste actuellement l'un des meilleurs traitements disponibles pour de nombreuses maladies en phase terminale. Bien que les médicaments immunosuppresseurs couramment utilisés soient efficaces dans le contrôle de la réponse immune engendrant le rejet aigu d'une greffe, la survie du greffon à long terme ainsi que la présence d'effets secondaires indésirables restent un enjeu considérable en clinique. C'est pourquoi il est nécessaire de trouver de nouvelles approches thérapeutiques innovantes permettant de contrôler la réponse immunitaire et ainsi d'améliorer les résultats à long terme. L'utilisation des lymphocytes T régulateurs (Treg), suppresseurs naturels de la réponse inflammatoire, a fait l'objet de nombreuses études ces dix dernières années, et pourrait être considérée comme un moyen intéressant d'améliorer la tolérance immunologique de la greffe. Cependant, l'un des obstacles de l'utilisation des Treg comme agent thérapeutique est leur nombre insuffisant non seulement en conditions normales, mais en particulier lors d'une forte réponse immune avec expansion de cellules immunitaires alloréactives. En raison des limitations techniques connues pour l'induction des Treg ex-vivo ou in vitro, nous avons dédié la première partie du travail de thèse à la détermination de l'efficacité de l'induction des Treg in vivo grâce à l'utilisation d'un complexe protéique IL-2/JES6-1 (IL2c). Nous avons montré que l'expansion des Treg par IL2c permettait d'augmenter la survie du greffon sur un modèle murin de transplantation de peau avec mismatch entre le donneur et le receveur pour le complexe majeur d'histocompatibilité (CMH). De plus, nous avons vu qu'en combinant IL2c à une inhibition à court terme de la voie de co-stimulation CD40L-CD40 (anti-CD154/MRl, administré au moment de la transplantation) pour empêcher l'activation des lymphocytes T, il est possible d'induire une tolérance robuste à long terme. Finalement, nos résultats soulignent l'importance de cibler une voie de co-stimulation bien particulière. En effet, l'utilisation d'IL2c combinée au blocage de la co-stimulation CD28-B7.1/2 (CTLA-4 Ig) n'induit qu'une faible prolongation de la survie de la greffe et n'induit pas de tolérance. L'application chez l'humain des traitements induisant la tolérance dans des modèles expérimentaux murins ou de primates n'a malheureusement pas montré de résultats probants en recherche clinique ; une des principales raisons étant la présence de lymphocytes B et T mémoires provenant du systeme d immunité acquise. C est pourquoi nous avons testé si la combinaison d'IL2c et MR1 améliorait la survie de la greffe dans des souris pré¬sensibilisées. Nous avons trouvé qu'en présence de lymphocytes B et T mémoires alloréactifs, l'utilisation d'IL2c et MR1 permettait une amélioration de la survie de la greffe de peau des souris immunocompétentes mais comparé aux souris receveuses naïves, aucune tolérance n'a pu être induite. Toutefois, l'ajout d'un traitement anti-LFA-1 (permettant de bloquer la circulation des lymphocytes T activées) a permis d'améliorer de manière significative la survie de la greffe. Cependant, le rejet chronique, dû à la présence de lymphocytes B activés/mémoires et la production d'anticorps donneur-spécifiques, n'a pas pu être évité. Cibler l'activation des lymphocytes T est la stratégie immunothérapeutique prépondérente après une TOS. C'est pourquoi dans la deuxième partie de cette thèse nous nous sommes intéressés au système de signalisation d'un récepteur des lymphocytes T qui dépend de la paracaspase Malti en tant que nouvelle stratégie immunosuppressive pour le contrôle des lymphocytes T alloréactifs. Nous avons montré que bien que l'inhibition de la signalisation du lymphocyte T en aval de Malti induise une tolérance envers un greffon de peau avec incompatibilités antigéniques mineures, cela ne permet cependant qu'une régulation partielle de l'alloréponse contre des antigènes du CMH. Nous nous sommes aussi intéressés spécifiquement à l'activité protéolytique de Malti. L'inhibition constitutive de l'activité protéolytique de Malti chez les souris Malti-ki s'est révélée délétère pour l'induction de la tolérance car elle diminue la fonction des Treg et augmente l'alloréactivité des cellules Thl. Cependant, lors de l'utilisation d'un inhibiteur peptidique de l'activité protéase de Malti in vitro, il a été possible d'observer une atténuation de l'alloéactivité des lymphocytes T ainsi qu'un maintien de la population des Treg existants. Ces résultats nous laissent penser que des études plus poussées sur le rôle de la signalisation médiée par Malti seraient à envisager dans le domaine de la transplantation. En résumé, les résultats obtenus durant cette thèse nous ont permis d'élucider certains mécanismes immunologiques propres à de nouvelles stratégies thérapeutiques potentielles dont le but est d'induire une tolérance lors de TOS. De plus, ces résultats nous ont permis de souligner l'importance d'utiliser des modèles davantage physiologiques contenant, notamment en tenant compte des lymphocytes B et T mémoires alloréactifs. -- Organ transplantation remains the best available treatment for many forms of end-stage organ diseases, with over 100,000 solid organ transplantations (SOT) occurring worldwide eveiy year. Although the available immunosuppressive (IS) drugs are efficient in controlling acute immune activation and graft rejection, the off-target side effects as well as long-term graft and patient survival remain a challenge in the clinic. Hence, innovative therapeutic approaches are needed to improve long-term outcome across immunological barriers. Based on extensive experimental data obtained over the last decade, it is tempting to consider immunotherapy using Treg; the natural suppressors of overt inflammatory responses, in promoting transplantation tolerance. The first hurdle for the therapeutic use of Treg is their insufficient numbers in non- manipulated individuals, in particular when facing strong immune activation and expanding alloreactive effector cells. Because of the limitations associated with current protocols aiming at ex-vivo expansion or in vitro induction of Treg, the aim of the first part of this thesis was to determine the efficacy of direct in vivo expansion of Treg using the IL-2/JES6- 1 immune complex (IL2c). We found that whilst IL2c mediated Treg expansion alone allowed the prolonged graft survival of fìlli MHC-mismatched skin grafts, its combination with short-term CD40L-CD40 co-stimulation blockade (anti-CD 154/MR1) to inhibit T cell activation administered at the time of transplantation was able to achieve long-term robust tolerance. This study also highlighted the importance of combining Treg based therapies with the appropriate co-stimulation blockade as a combination of IL2c and CD28-B7.1/2 co- stimulation blockade (CTLA-4 Ig) only resulted in slight prolongation of graft survival but not tolerance. The translation of tolerance induction therapies modelled in rodents into non-human primates or into clinical trials has seldom been successful. One main reason being the presence of pre-existing memory T- and B-cells due to acquired immunity in humans versus laboratory animals. Hence, we tested whether IL2c+MRl could promote graft survival in pre-sensitized mice. We found that in the presence of alloreactive memory T- and B-cells, IL2c+MRl combination therapy could prolong MHC-mismatched skin graft survival in immunocompetent mice but tolerance was lost compared to the naïve recipients. The addition of anti-LF A-1 treatment, which prevents the trafficking of memory T cells worked synergistically to significantly further enhance graft survival. However, late rejection mediated by activated/memory B cells and persistent donor-specific alloantibodies still occurred. Immunotherapeutic strategies targeting the activation of T cells are the cornerstone in the current immunosuppressive management after SOT. Therefore, in the next part of this thesis we investigated the paracaspase Malti-dependent T-cell receptor signalling as a novel immunosuppressive strategy to control alloreactive T cells in transplantation. We observed that although the inhibition of Malti downstream T signalling lead to tolerance of a minor H- mismatch skin grafts, it was however not sufficient to regulate alloresponses against MHC mismatches and only prolonged graft survival. Furthermore, we investigated the potential of more selectively targeting the protease activity of Malti. Constitutive inhibition of Malti protease activity in Malti-ki mice was detrimental to tolerance induction as it diminished Treg function and increased Thl alloreactivity. However, when using a small peptide inhibitor of Malti proteolytic activity in vitro, we observed an attenuation of alloreactive T cells and sparing of the pre-existing Treg pool. This indicates that further investigation of the role of Malti signalling in the field of transplantation is required. Collectively, the findings of this thesis provide immunological mechanisms underlying novel therapeutic strategies for the promotion of tolerance in SOT. Moreover, we highlight the importance of testing tolerance induction therapies in more physiological models with pre-existing alloreactive memory T and B cells.
Resumo:
In 2000, Enterococcus faecalis resistant to vancomycin was first reported at a tertiary hospital in Porto Alegre, southern Brazil. The resistance spread to other hospitals and surveillance programs were established by hospital infection committees to prevent the spread of vancomycin-resistant enterococci. In February 2002, an isolate initially identified at the genus level as Enterococcus was obtained by surveillance culture (rectal swab) from a patient admitted to a hospital for treatment of septic arthritis in the shoulder. The isolate proved to be resistant to vancomycin by the disc diffusion method and confirmed by an E-test resulting in a minimal inhibitory concentration of > or = 256 µg/ml. This isolate was sent to a reference laboratory (Laboratório Especial de Bacteriologia e Epidemiologia Molecular, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP) for further study and proved to be an E. gallinarum by the polymerase chain reaction (PCR) using specific primers for the species. Due to the phenotype of unusually high vancomycin resistance, the isolate presumably had the resistance genes (vanA and vanB) and this was confirmed by PCR, which indicated the presence of the vanA gene. A 10.8-kb Tn1546-related transposon was also identified by long-PCR. Interspecies transfer of the vancomycin-resistance gene from the donor E. gallinarum was performed in a successful conjugation experiment in vitro, using E. faecium GE-1 and E. faecalis JH22 as receptors. This is the first report of the detection of a vanA determinant naturally acquired by E. gallinarum in Brazil, indicating the importance of characterizing VRE by both phenotype and genotype methods.
Resumo:
Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated) or BALB/c (297 and 58 genes, respectively, up- and down-regulated) mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.
Resumo:
Réalisé en cotutelle avec le Dr James G Martin de l'Université McGill (Meakins-Christie laboratories)
Resumo:
Les objectifs de cette étude étaient (1) de décrire la localisation et la sévérité des lésions d’ostéoarthrose (OA) chroniques acquises naturellement au niveau du grasset équin grâce à l’échographie (US), la radiographie (XR), la tomodensitométrie (CT) et l’évaluation macroscopique (ME), (2) de comparer la performance diagnostique de chacune des modalities d’imagerie avec ME et (3) d’évaluer quantitativement la densité osseuse sous-chondrale lors d’OA du grasset chez le cheval à la tomodensitométrie. Des évaluations post mortem radiographique, tomodensitométrique et échographique ont été réalisées sur 23 grassets cadavériques et comparées à l’évaluation macroscopique. Des associations significatives ont été notées entre le «osteophytes global score» de toutes les modalités (US, p=0.04; XR, p=0.005; CT, p˂0.0001) et ME. De plus, la tomodensitométrie a démontré la plus forte association. Les ostéophytes étaient principalement localisés au niveau de l’articulation fémorotibiale médiale et cette articulation présentait également les scores d’ostéophytes les plus sévères. Un patron spécifique d’ostéophytes associé à l’insertion de la capsule articulaire sur le condyle fémoral médial a été mis en évidence. La nouvelle projection radiographique (Ca10Pr5L-CrDiMO) a été utile dans la détection des ostéophytes de la région intercondylaire. Les grades d’ostéophytes (0-3) ne différaient pas significativement selon la modalité dans la majorité des sites. La faible sensibilité/spécificité a indiqué que la sclérose de l’os sous-chondral et l’applatissement des condyles fémoraux ne semblent pas être des indicateurs fiables d’OA du grasset équin. L’OA du grasset équin est associée à une réduction de la densité osseuse sous-chondrale et des sites spécifiques de résorption/kystes sous-chondraux ont été notés chez certains spécimens.
Resumo:
Commensal bacteria, including some species of lactobacilli commonly present in human breast milk, appear to colonize the neonatal gut and contribute to protection against infant infections, suggesting that lactobacilli could potentially modulate immunity. In this study, we evaluated the potential of two Lactobacillus strains isolated from human milk to modulate the activation and cytokine profile of peripheral blood mononuclear cell (PBMC) subsets in vitro. Moreover, these effects were compared to the same probiotic species of non-milk origin. Lactobacillus salivarius CECT5713 and Lactobacillus fermentum CECT5716 at 105, 106 and 107 bacteria/mL were co-cultured with PBMC (106/mL) from 8 healthy donors for 24 h. Activation status (CD69 and CD25 expressions) of natural killer (NK) cells (CD56+), total T cells (CD3+), cytotoxic T cells (CD8+) and CD4+ T cells was determined by flow cytometry. Regulatory T cells (Treg) were also quantified by intracellular Foxp3 evaluation. Regarding innate immunity, NK cells were activated by addition of both Lactobacillus strains, and in particular, the CD8+ NK subset was preferentially induced to highly express CD69 (90%, p<0.05). With respect to acquired immunity, approximately 9% of CD8+ T cells became activated after co-cultivation with L. fermentum or L salivarius. Although CD4+ T cells demonstrated a weaker response, there was a preferential activation of Treg cells (CD4+CD25+Foxp3+) after exposure to both milk probiotic bacteria (p<0.05). Both strains significantly induced the production of a number of cytokines and chemokines, including TNFα, IL-1β, IL-8, MIP-1α, MIP-1β, and GM-CSF, but some strain-specific effects were apparent. This work demonstrates that L salivarius CECT5713 and L. fermentum CECT5716 enhanced both natural and acquired immune responses, as evidenced by the activation of NK and T cell subsets and the expansion of Treg cells, as well as the induction of a broad array of cytokines.
Resumo:
Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.