969 resultados para Natural resources -- Remote sensing
Resumo:
In the recent years, kernel methods have revealed very powerful tools in many application domains in general and in remote sensing image classification in particular. The special characteristics of remote sensing images (high dimension, few labeled samples and different noise sources) are efficiently dealt with kernel machines. In this paper, we propose the use of structured output learning to improve remote sensing image classification based on kernels. Structured output learning is concerned with the design of machine learning algorithms that not only implement input-output mapping, but also take into account the relations between output labels, thus generalizing unstructured kernel methods. We analyze the framework and introduce it to the remote sensing community. Output similarity is here encoded into SVM classifiers by modifying the model loss function and the kernel function either independently or jointly. Experiments on a very high resolution (VHR) image classification problem shows promising results and opens a wide field of research with structured output kernel methods.
Resumo:
In 2011, the National Energy Retrofit Programme will build upon existing energy saving programmes in both the domestic and non-domestic sectors. This consultation focused on key design considerations. IPH agree with the commitment to deliver a National Energy Retrofit Programme as a sustainable means of securing energy savings and reducing energy poverty and the nations carbon footprint. The IPH response highlighted the significant benefit to health and would support the use of Health Impact Assessment
Resumo:
Schistosomiasis mansoni is not just a physical disease, but is related to social and behavioural factors as well. Snails of the Biomphalaria genus are an intermediate host for Schistosoma mansoni and infect humans through water. The objective of this study is to classify the risk of schistosomiasis in the state of Minas Gerais (MG). We focus on socioeconomic and demographic features, basic sanitation features, the presence of accumulated water bodies, dense vegetation in the summer and winter seasons and related terrain characteristics. We draw on the decision tree approach to infection risk modelling and mapping. The model robustness was properly verified. The main variables that were selected by the procedure included the terrain's water accumulation capacity, temperature extremes and the Human Development Index. In addition, the model was used to generate two maps, one that included risk classification for the entire of MG and another that included classification errors. The resulting map was 62.9% accurate.
Resumo:
Annual Report, Agency performance plan
Resumo:
State Agency Audit Report
Resumo:
State Agency Audit Report
Resumo:
State Agency Audit Report State Revolving Fund - Clean Water & Drinking Programs
Resumo:
Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.
Resumo:
State Agency Audit Report
Resumo:
Investigative report produced by Iowa Citizens' Aide/Ombudsman