976 resultados para Na Conductance
Resumo:
A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatalconductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol. IV. Martinus Nijhoff, Dordrecht, pp. 221224.] algorithm for calculating stomatalconductance (gs) at the leaf level have been parameterised for two crop and two tree species to test their use in regional scale ozone deposition modelling. The algorithms were tested against measured, site-specific data for durum wheat, grapevine, beech and birch of different European provenances. A direct comparison of both algorithms showed a similar performance in predicting hourly means and daily time-courses of gs, whereas the multiplicative algorithm outperformed the BWB-type algorithm in modelling seasonal time-courses due to the inclusion of a phenology function. The re-parameterisation of the algorithms for local conditions in order to validate ozone deposition modelling on a European scale reveals the higher input requirements of the BWB-type algorithm as compared to the multiplicative algorithm because of the need of the former to model net photosynthesis (An)
Resumo:
A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine1 by September 2nd. Pre-dawn leaf water potential (PD) and midday l on August 24th were 0.075 and 0.76 MPa, respectively, with midday l decreasing to 1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m2 s1 during the two dry-down periods. Midday measurements of g s and l were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in l, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water use
Resumo:
Conductance interaction identification by means of Boltzmann distribution and mutual information analysis in conductance-based neuron models.
Resumo:
Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre-defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.
Resumo:
An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 M). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 M). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.
Resumo:
cAMP-dependent phosphorylation activates the cystic fibrosis transmembrane conductance regulator (CFTR) in epithelia. However, the protein phosphatase (PP) that dephosphorylates and inactivates CFTR in airway and intestinal epithelia, two major sites of disease, is not certain. We found that in airway and colonic epithelia, neither okadaic acid nor FK506 prevented inactivation of CFTR when cAMP was removed. These results suggested that a phosphatase distinct from PP1, PP2A, and PP2B was responsible. Because PP2C is insensitive to these inhibitors, we tested the hypothesis that it regulates CFTR. We found that PP2C is expressed in airway and T84 intestinal epithelia. To test its activity on CFTR, we generated recombinant human PP2C and found that it dephosphorylated CFTR and an R domain peptide in vitro. Moreover, in cell-free patches of membrane, addition of PP2C inactivated CFTR Cl channels; reactivation required readdition of kinase. Finally, coexpression of PP2C with CFTR in epithelia reduced the Cl current and increased the rate of channel inactivation. These results suggest that PP2C may be the okadaic acid-insensitive phosphatase that regulates CFTR in human airway and T84 colonic epithelia. It has been suggested that phosphatase inhibitors could be of therapeutic value in cystic fibrosis; our data suggest that PP2C may be an important phosphatase to target.
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.
Resumo:
While chemical synapses are very plastic and modifiable by defined activity patterns, gap junctions, which mediate electrical transmission, have been classically perceived as passive intercellular channels. Excitatory transmission between auditory afferents and the goldfish Mauthner cell is mediated by coexisting gap junctions and glutamatergic synapses. Although an increased intracellular Ca2+ concentration is expected to reduce gap junctional conductance, both components of the synaptic response were instead enhanced by postsynaptic increases in Ca2+ concentration, produced by patterned synaptic activity or intradendritic Ca2+ injections. The synaptically induced potentiations were blocked by intradendritic injection of KN-93, a Ca2+/calmodulin-dependent kinase (CaM-K) inhibitor, or CaM-KIINtide, a potent and specific peptide inhibitor of CaM-KII, whereas the responses were potentiated by injection of an activated form of CaM-KII. The striking similarities of the mechanisms reported here with those proposed for long-term potentiation of mammalian glutamatergic synapses suggest that gap junctions are also similarly regulated and indicate a primary role for CaM-KII in shaping and regulating interneuronal communication, regardless of its modality.
Resumo:
Large conductance calcium- and voltage-sensitive K+ (MaxiK) channels share properties of voltage- and ligand-gated ion channels. In voltage-gated channels, membrane depolarization promotes the displacement of charged residues contained in the voltage sensor (S4 region) inducing gating currents and pore opening. In MaxiK channels, both voltage and micromolar internal Ca2+ favor pore opening. We demonstrate the presence of voltage sensor rearrangements with voltage (gating currents) whose movement and associated pore opening is triggered by voltage and facilitated by micromolar internal Ca2+ concentration. In contrast to other voltage-gated channels, in MaxiK channels there is charge movement at potentials where the pore is open and the total charge per channel is 45 elementary charges.
Resumo:
Large conductance voltage and Ca2+-activated K+ (MaxiK) channels couple intracellular Ca2+ with cellular excitability. They are composed of a pore-forming subunit and modulatory subunits. The pore blockers charybdotoxin (CTx) and iberiotoxin (IbTx), at nanomolar concentrations, have been invaluable in unraveling MaxiK channel physiological role in vertebrates. However in mammalian brain, CTx-insensitive MaxiK channels have been described [Reinhart, P. H., Chung, S. & Levitan, I. B. (1989) Neuron 2, 10311041], but their molecular basis is unknown. Here we report a human MaxiK channel -subunit (4), highly expressed in brain, which renders the MaxiK channel -subunit resistant to nanomolar concentrations of CTx and IbTx. The resistance of MaxiK channel to toxin block, a phenotype conferred by the 4 extracellular loop, results from a dramatic (1,000 fold) slowdown of the toxin association. However once bound, the toxin block is apparently irreversible. Thus, unusually high toxin concentrations and long exposure times are necessary to determine the role of CTx/IbTx-insensitive MaxiK channels formed by + 4 subunits.
Resumo:
Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity.
Resumo:
Slow nonselective cation conductances play a central role in determining the excitability of many neurons, but heretofore this channel type has not been analyzed at the single-channel level. Neurotensin (NT) excites cultured dopaminergic neurons from the ventral tegmental area primarily by increasing such a cation conductance. Using the outsideout configuration of the patch clamp, we elicited single-channel activity of this NT-induced cation channel. Channel activity was blocked by the nonpeptide NT antagonist SR48692, indicating that the response was mediated by NT receptors. The channel opened in both solitary form and in bursts. The reversal potential was 4.2 1.7 mV, and the elementary conductance was 31 pS at 67 mV with [Na+]o = 140 mM, [Cs+]o = 5 mM, [Na+]i = 88 mM, and [Cs+]i = 74 mM. Thus, the channel was permeable to both Na+ and Cs+. From these characteristics, it is likely that this channel is responsible for the whole-cell current we studied previously. In guanosine 5-[-thio]triphosphate-loaded cells, NT irreversibly activated about half of the channel activity, suggesting that at least part of the response was mediated by a G protein. Similar channel activity could be induced occasionally in the cell-attached configuration by applying NT outside the patch region.
Resumo:
The pore-forming subunit of large conductance voltage- and Ca2+-sensitive K (MaxiK) channels is regulated by a subunit that has two membrane-spanning regions separated by an extracellular loop. To investigate the structural determinants in the pore-forming subunit necessary for -subunit modulation, we made chimeric constructs between a human MaxiK channel and the Drosophila homologue, which we show is insensitive to -subunit modulation, and analyzed the topology of the subunit. A comparison of multiple sequence alignments with hydrophobicity plots revealed that MaxiK channel subunits have a unique hydrophobic segment (S0) at the N terminus. This segment is in addition to the six putative transmembrane segments (S1S6) usually found in voltage-dependent ion channels. The transmembrane nature of this unique S0 region was demonstrated by in vitro translation experiments. Moreover, normal functional expression of signal sequence fusions and in vitro N-linked glycosylation experiments indicate that S0 leads to an exoplasmic N terminus. Therefore, we propose a new model where MaxiK channels have a seventh transmembrane segment at the N terminus (S0). Chimeric exchange of 41 N-terminal amino acids, including S0, from the human MaxiK channel to the Drosophila homologue transfers -subunit regulation to the otherwise unresponsive Drosophila channel. Both the unique S0 region and the exoplasmic N terminus are necessary for this gain of function.
Resumo:
(RS)-2-cis, 4-trans-abscisic acid (ABA), a naturally occurring plant stress hormone, elicited rapid agonist-specific changes in myo-inositol hexakisphosphate (InsP6) measured in intact guard cells of Solanum tuberosum (n = 5); these changes were not reproduced by (RS)-2-trans, 4-trans-abscisic acid, an inactive stereoisomer of ABA (n = 4). The electrophysiological effects of InsP6 were assessed on both S. tuberosum (n = 14) and Vicia faba (n = 6) guard cell protoplasts. In both species, submicromolar concentrations of InsP6, delivered through the patch electrode, mimicked the inhibitory effects of ABA and internal calcium (Cai2+) on the inward rectifying K+ current, IK,in, in a dose-dependent manner. Steady state block of IK,in by InsP6 was reached much more quickly in Vicia (3 min at 1 M) than Solanum (2030 min). The effects of InsP6 on IK,in were specific to the myo-inositol isomer and were not elicited by other conformers of InsP6 (e.g., scyllo- or neo-). Chelation of Ca2+ by inclusion of 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid or EGTA in the patch pipette together with InsP6 prevented the inhibition of IK,in, suggesting that the effect is Ca2+ dependent. InsP6 was 100-fold more potent than Ins(1,4,5)P3 in modulating IK,in. Thus ABA increases InsP6 in guard cells, and InsP6 is a potent Ca2+-dependent inhibitor of IK,in. Taken together, these results suggest that InsP6 may play a major role in the physiological response of guard cells to ABA.
Resumo:
To elucidate the role of thyroid hormone receptors (TRs) 1 and in the development of hearing, cochlear functions have been investigated in mice lacking TR1 or TR. TRs are ligand-dependent transcription factors expressed in the developing organ of Corti, and loss of TR is known to impair hearing in mice and in humans. Here, TR1-deficient (TR1/) mice are shown to display a normal auditory-evoked brainstem response, indicating that only TR, and not TR1, is essential for hearing. Because cochlear morphology was normal in TR/ mice, we postulated that TR regulates functional rather than morphological development of the cochlea. At the onset of hearing, inner hair cells (IHCs) in wild-type mice express a fast-activating potassium conductance, IK,f, that transforms the immature IHC from a regenerative, spiking pacemaker to a high-frequency signal transmitter. Expression of IK,f was significantly retarded in TR/ mice, whereas the development of the endocochlear potential and other cochlear functions, including mechanoelectrical transduction in hair cells, progressed normally. TR1/ mice expressed IK,f normally, in accord with their normal auditory-evoked brainstem response. These results establish that the physiological differentiation of IHCs depends on a TR-mediated pathway. When defective, this may contribute to deafness in congenital thyroid diseases.