918 resultados para NP-hard


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We survey recent results on the computational complexity of mixed shop scheduling problems. In a mixed shop, some jobs have fixed machine orders (as in the job shop), while the operations of the other jobs may be processed in arbitrary order (as in the open shop). The main attention is devoted to establishing the boundary between polynomially solvable and NP-hard problems. When the number of operations per job is unlimited, we focus on problems with a fixed number of jobs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we study a problem of scheduling and batching on two machines in a flow-shop and open-shop environment. Each machine processes operations in batches, and the processing time of a batch is the sum of the processing times of the operations in that batch. A setup time, which depends only on the machine, is required before a batch is processed on a machine, and all jobs in a batch remain at the machine until the entire batch is processed. The aim is to make batching and sequencing decisions, which specify a partition of the jobs into batches on each machine, and a processing order of the batches on each machine, respectively, so that the makespan is minimized. The flow-shop problem is shown to be strongly NP-hard. We demonstrate that there is an optimal solution with the same batches on the two machines; we refer to these as consistent batches. A heuristic is developed that selects the best schedule among several with one, two, or three consistent batches, and is shown to have a worst-case performance ratio of 4/3. For the open-shop, we show that the problem is NP-hard in the ordinary sense. By proving the existence of an optimal solution with one, two or three consistent batches, a close relationship is established with the problem of scheduling two or three identical parallel machines to minimize the makespan. This allows a pseudo-polynomial algorithm to be derived, and various heuristic methods to be suggested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study a two-machine open shop scheduling problem, in which one machine is not available for processing during a given time interval. The objective is to minimize the makespan. We show that the problem is NP-hard and present an approximation algorithm with a worst-case ratio of 4/3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P6≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper considers a variant of the classical problem of minimizing makespan in a two-machine flow shop. In this variant, each job has three operations, where the first operation must be performed on the first machine, the second operation can be performed on either machine but cannot be preempted, and the third operation must be performed on the second machine. The NP-hard nature of the problem motivates the design and analysis of approximation algorithms. It is shown that a schedule in which the operations are sequenced arbitrarily, but without inserted machine idle time, has a worst-case performance ratio of 2. Also, an algorithm that constructs four schedules and selects the best is shown to have a worst-case performance ratio of 3/2. A polynomial time approximation scheme (PTAS) is also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the problem of scheduling families of jobs in a two-machine open shop so as to minimize the makespan. The jobs of each family can be partitioned into batches and a family setup time on each machine is required before the first job is processed, and when a machine switches from processing a job of some family to a job of another family. For this NP-hard problem the literature contains (5/4)-approximation algorithms that cannot be improved on using the class of group technology algorithms in which each family is kept as a single batch. We demonstrate that there is no advantage in splitting a family more than once. We present an algorithm that splits one family at most once on a machine and delivers a worst-case performance ratio of 6/5.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a problem of scheduling jobs on m parallel machines. The machines are dedicated, i.e., for each job the processing machine is known in advance. We mainly concentrate on the model in which at any time there is one unit of an additional resource. Any job may be assigned the resource and this reduces its processing time. A job that is given the resource uses it at each time of its processing. No two jobs are allowed to use the resource simultaneously. The objective is to minimize the makespan. We prove that the two-machine problem is NP-hard in the ordinary sense, describe a pseudopolynomial dynamic programming algorithm and convert it into an FPTAS. For the problem with an arbitrary number of machines we present an algorithm with a worst-case ratio close to 3/2, and close to 3, if a job can be given several units of the resource. For the problem with a fixed number of machines we give a PTAS. Virtually all algorithms rely on a certain variant of the linear knapsack problem (maximization, minimization, multiple-choice, bicriteria). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Call control features (e.g., call-divert, voice-mail) are primitive options to which users can subscribe off-line to personalise their service. The configuration of a feature subscription involves choosing and sequencing features from a catalogue and is subject to constraints that prevent undesirable feature interactions at run-time. When the subscription requested by a user is inconsistent, one problem is to find an optimal relaxation, which is a generalisation of the feedback vertex set problem on directed graphs, and thus it is an NP-hard task. We present several constraint programming formulations of the problem. We also present formulations using partial weighted maximum Boolean satisfiability and mixed integer linear programming. We study all these formulations by experimentally comparing them on a variety of randomly generated instances of the feature subscription problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In distributed networks, some groups of nodes may have more inter-connections, perhaps due to their larger bandwidth availability or communication requirements. In many scenarios, it may be useful for the nodes to know if they form part of a dense subgraph, e.g., such a dense subgraph could form a high bandwidth backbone for the network. In this work, we address the problem of self-awareness of nodes in a dynamic network with regards to graph density, i.e., we give distributed algorithms for maintaining dense subgraphs (subgraphs that the member nodes are aware of). The only knowledge that the nodes need is that of the dynamic diameter D, i.e., the maximum number of rounds it takes for a message to traverse the dynamic network. For our work, we consider a model where the number of nodes are fixed, but a powerful adversary can add or remove a limited number of edges from the network at each time step. The communication is by broadcast only and follows the CONGEST model in the sense that only messages of O(log n) size are permitted, where n is the number of nodes in the network. Our algorithms are continuously executed on the network, and at any time (after some initialization) each node will be aware if it is part (or not) of a particular dense subgraph. We give algorithms that approximate both the densest subgraph, i.e., the subgraph of the highest density in the network, and the at-least-k-densest subgraph (for a given parameter k), i.e., the densest subgraph of size at least k. We give a (2 + e)-approximation algorithm for the densest subgraph problem. The at-least-k-densest subgraph is known to be NP-hard for the general case in the centralized setting and the best known algorithm gives a 2-approximation. We present an algorithm that maintains a (3+e)-approximation in our distributed, dynamic setting. Our algorithms run in O(Dlog n) time. © 2012 Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove an analogous result for inference in Naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and Naive Bayes networks are used in real applications of imprecise probability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Influence diagrams are intuitive and concise representations of structured decision problems. When the problem is non-Markovian, an optimal strategy can be exponentially large in the size of the diagram. We can avoid the inherent intractability by constraining the size of admissible strategies, giving rise to limited memory influence diagrams. A valuable question is then how small do strategies need to be to enable efficient optimal planning. Arguably, the smallest strategies one can conceive simply prescribe an action for each time step, without considering past decisions or observations. Previous work has shown that finding such optimal strategies even for polytree-shaped diagrams with ternary variables and a single value node is NP-hard, but the case of binary variables was left open. In this paper we address such a case, by first noting that optimal strategies can be obtained in polynomial time for polytree-shaped diagrams with binary variables and a single value node. We then show that the same problem is NP-hard if the diagram has multiple value nodes. These two results close the fixed-parameter complexity analysis of optimal strategy selection in influence diagrams parametrized by the shape of the diagram, the number of value nodes and the maximum variable cardinality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Credal networks are graph-based statistical models whose parameters take values on a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The result of inferences with such models depends on the irrelevance/independence concept adopted. In this paper, we study the computational complexity of inferences under the concepts of epistemic irrelevance and strong independence. We strengthen complexity results by showing that inferences with strong independence are NP-hard even in credal trees with ternary variables, which indicates that tractable algorithms, including the existing one for epistemic trees, cannot be used for strong independence. We prove that the polynomial time of inferences in credal trees under epistemic irrelevance is not likely to extend to more general models, because the problem becomes NP-hard even in simple polytrees. These results draw a definite line between networks with efficient inferences and those where inferences are hard, and close several open questions regarding the computational complexity of such models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Credal networks generalize Bayesian networks by relaxing the requirement of precision of probabilities. Credal networks are considerably more expressive than Bayesian networks, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal networks. The algorithm is based on an important representation result we prove for general credal networks: that any credal network can be equivalently reformulated as a credal network with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal network is then updated by L2U, a loopy approximate algorithm for binary credal networks. Overall, we generalize L2U to non-binary credal networks, obtaining a scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences with respect to other state-of-the-art algorithms is evaluated by extensive numerical tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a new algorithm for exactly solving decision making problems represented as influence diagrams. We do not require the usual assumptions of no forgetting and regularity; this allows us to solve problems with simultaneous decisions and limited information. The algorithm is empirically shown to outperform a state-of-the-art algorithm on randomly generated problems of up to 150 variables and 10^64 solutions. We show that these problems are NP-hard even if the underlying graph structure of the problem has low treewidth and the variables take on a bounded number of states, and that they admit no provably good approximation if variables can take on an arbitrary number of states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Credal nets are probabilistic graphical models which extend Bayesian nets to cope with sets of distributions. This feature makes the model particularly suited for the implementation of classifiers and knowledge-based systems. When working with sets of (instead of single) probability distributions, the identification of the optimal option can be based on different criteria, some of them eventually leading to multiple choices. Yet, most of the inference algorithms for credal nets are designed to compute only the bounds of the posterior probabilities. This prevents some of the existing criteria from being used. To overcome this limitation, we present two simple transformations for credal nets which make it possible to compute decisions based on the maximality and E-admissibility criteria without any modification in the inference algorithms. We also prove that these decision problems have the same complexity of standard inference, being NP^PP-hard for general credal nets and NP-hard for polytrees.