996 resultados para NMR quantum computing
Resumo:
We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel ( 2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM ( 2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.
Resumo:
We present experimental results on the measurement of fidelity decay under contrasting system dynamics using a nuclear magnetic resonance quantum information processor. The measurements were performed by implementing a scalable circuit in the model of deterministic quantum computation with only one quantum bit. The results show measurable differences between regular and complex behavior and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how the experimental method can be seen as an efficient way for either extracting coarse-grained information about the dynamics of a large system or measuring the decoherence rate from engineered environments.
Resumo:
A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor (P-31) doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To realize the selection function, it is required to know the relationship between the applied electric field and the change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the perturbed system under the influence of an electric field. In order to calculate the potential distributions inside the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green's functions and solve an integral equation by the moment method. This enables us to consider more realistic, arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.
Resumo:
The nuclear isotropic shielding constants sigma((17)O) and sigma((13)C) of the carbonyl bond of acetone in water at supercritical (P=340.2 atm and T=673 K) and normal water conditions have been studied theoretically using Monte Carlo simulation and quantum mechanics calculations based on the B3LYP/6-311++G(2d,2p) method. Statistically uncorrelated configurations have been obtained from Monte Carlo simulations with unpolarized and in-solution polarized solute. The results show that solvent effects on the shielding constants have a significant contribution of the electrostatic interactions and that quantitative estimates for solvent shifts of shielding constants can be obtained modeling the water molecules by point charges (electrostatic embedding). In supercritical water, there is a decrease in the magnitude of sigma((13)C) but a sizable increase in the magnitude of sigma((17)O) when compared with the results obtained in normal water. It is found that the influence of the solute polarization is mild in the supercritical regime but it is particularly important for sigma((17)O) in normal water and its shielding effect reflects the increase in the average number of hydrogen bonds between acetone and water. Changing the solvent environment from normal to supercritical water condition, the B3LYP/6-311++G(2d,2p) calculations on the statistically uncorrelated configurations sampled from the Monte Carlo simulation give a (13)C chemical shift of 11.7 +/- 0.6 ppm for polarized acetone in good agreement with the experimentally inferred result of 9-11 ppm. (C) 2008 American Institute of Physics.
Resumo:
In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.
Resumo:
This paper presents a description of nuclear magnetic resonance (NMR) of quadrupolar systems using the Holstein-Primakoff (HP) formalism and its analogy with a Bose-Einstein condensate (BEC) system. Two nuclear spin systems constituted of quadrupolar nuclei I=3/2 ((23)Na) and I=7/2 ((133)Cs) in lyotropic liquid crystals were used for experimental demonstrations. Specifically, we derived the conditions necessary for accomplishing the analogy, executed the proper experiments, and compared with quantum mechanical prediction for a Bose system. The NMR description in the HP representation could be applied in the future as a workbench for BEC-like systems, where the statistical properties may be obtained using the intermediate statistic, first established by Gentile. The description can be applied for any quadrupolar systems, including new developed solid-state NMR GaAS nanodevices.
Resumo:
Quantum integrability is established for the one-dimensional supersymmetric U model with boundary terms by means of the quantum inverse-scattering method. The boundary supersymmetric U chain is solved by using the coordinate-space Bethe-ansatz technique and Bethe-ansatz equations are derived. This provides us with a basis for computing the finite-size corrections to the low-lying energies in the system. [S0163-1829(98)00425-1].
Resumo:
Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.
Resumo:
We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial state. The difference appears as nonpositive-definite diffusion terms in the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not possible to express the dynamics in terms of a convolution of a positive transition probability function and the initial condition as can be done in the classical case. It is this feature that enables the quantum system to evolve to an entangled state. We conclude that the dynamics are a quantum element of nuclear magnetic resonance quantum-information processing. There are two limits where our quantum evolution coincides with the classical one: the short-time limit before spin-spin interaction sets in and the long-time limit when phase diffusion is incorporated.
Resumo:
Résumé La cryptographie classique est basée sur des concepts mathématiques dont la sécurité dépend de la complexité du calcul de l'inverse des fonctions. Ce type de chiffrement est à la merci de la puissance de calcul des ordinateurs ainsi que la découverte d'algorithme permettant le calcul des inverses de certaines fonctions mathématiques en un temps «raisonnable ». L'utilisation d'un procédé dont la sécurité est scientifiquement prouvée s'avère donc indispensable surtout les échanges critiques (systèmes bancaires, gouvernements,...). La cryptographie quantique répond à ce besoin. En effet, sa sécurité est basée sur des lois de la physique quantique lui assurant un fonctionnement inconditionnellement sécurisé. Toutefois, l'application et l'intégration de la cryptographie quantique sont un souci pour les développeurs de ce type de solution. Cette thèse justifie la nécessité de l'utilisation de la cryptographie quantique. Elle montre que le coût engendré par le déploiement de cette solution est justifié. Elle propose un mécanisme simple et réalisable d'intégration de la cryptographie quantique dans des protocoles de communication largement utilisés comme les protocoles PPP, IPSec et le protocole 802.1li. Des scénarios d'application illustrent la faisabilité de ces solutions. Une méthodologie d'évaluation, selon les critères communs, des solutions basées sur la cryptographie quantique est également proposée dans ce document. Abstract Classical cryptography is based on mathematical functions. The robustness of a cryptosystem essentially depends on the difficulty of computing the inverse of its one-way function. There is no mathematical proof that establishes whether it is impossible to find the inverse of a given one-way function. Therefore, it is mandatory to use a cryptosystem whose security is scientifically proven (especially for banking, governments, etc.). On the other hand, the security of quantum cryptography can be formally demonstrated. In fact, its security is based on the laws of physics that assure the unconditional security. How is it possible to use and integrate quantum cryptography into existing solutions? This thesis proposes a method to integrate quantum cryptography into existing communication protocols like PPP, IPSec and the 802.l1i protocol. It sketches out some possible scenarios in order to prove the feasibility and to estimate the cost of such scenarios. Directives and checkpoints are given to help in certifying quantum cryptography solutions according to Common Criteria.
Resumo:
We investigate nuclear magnetic resonance (NMR) parameters of the rhodopsin chromophore in the dark state of the protein and in the early photointermediate bathorhodopsin via first-principles molecular dynamics simulations and NMR chemical shift calculations in a hybrid quantum/classical (QM/MM) framework. NMR parameters are particularly sensitive to structural properties and to the chemical environment, which allows us to address different questions about the retinal chromophore in situ. Our calculations show that both the 13C and the 1H NMR chemical shifts are rather insensitive to the protonation state of Glu181, an ionizable amino acid side chain located in the vicinity of the isomerizing 11-cis bond. Thus, other techniques should be better suited to establish its protonation state. The calculated chemical shifts for bathorhodopsin further support our previously published theoretical structure, which is in very good agreement with more recent X-ray data.
Resumo:
Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetracoordinated Sn compounds of the CH3SnRR'X type, where X is a halogen and R and R' are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR'X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR' and inorganic group X on electronegativities and hardness of the SnRR'X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental 119Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules. This work was complemented with the study of some compounds of the EX and ER types, where E= C, Si, Ge, Sn and R= CH3, H, which was performed to study the influence that the central atom has on the electronegativity and hardness of molecules, or whether these properties are mainly affected for the type of ligand bound to the central atom. All these calculations were performed using the B3PW91 functional together with the 6-311++G** basis set level for H, C, Si, Ge, F, Cl and Br atoms and the 3-21G for Sn and I atoms.
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
This work investigates mathematical details and computational aspects of Metropolis-Hastings reptation quantum Monte Carlo and its variants, in addition to the Bounce method and its variants. The issues that concern us include the sensitivity of these algorithms' target densities to the position of the trial electron density along the reptile, time-reversal symmetry of the propagators, and the length of the reptile. We calculate the ground-state energy and one-electron properties of LiH at its equilibrium geometry for all these algorithms. The importance sampling is performed with a single-determinant large Slater-type orbitals (STO) basis set. The computer codes were written to exploit the efficiencies engineered into modern, high-performance computing software. Using the Bounce method in the calculation of non-energy-related properties, those represented by operators that do not commute with the Hamiltonian, is a novel work. We found that the unmodified Bounce gives good ground state energy and very good one-electron properties. We attribute this to its favourable time-reversal symmetry in its target density's Green's functions. Breaking this symmetry gives poorer results. Use of a short reptile in the Bounce method does not alter the quality of the results. This suggests that in future applications one can use a shorter reptile to cut down the computational time dramatically.