216 resultados para NEUROPEPTIDES
Resumo:
A variety of genes expressed in preparasitic second-stage juveniles (J2) of plant-parasitic nematodes appear to be vulnerable to RNA interference (RNAi) in vitro by coupling double-stranded (ds)RNA soaking with the artificial stimulation of pharyngeal pumping. Also, there is mounting evidence that the in planta generation of nematode-specific double-stranded RNAs (dsRNAs) has real utility in the control of these pests. Although neuronally-expressed genes in Caenorhabditis elegans are commonly refractory to RNAi, we have discovered that neuronally-expressed genes in plant-parasitic nematodes are highly susceptible to RNAi and that silencing can be induced by simple soaking procedures without the need for pharyngeal stimulation. Since most front-line anthelmintics that are used for the control of nematode parasites of animals and humans act to disrupt neuromuscular coordination, we argue that intercellular signalling processes associated with neurons have much appeal as targets for transgenic plant-based control strategies for plant-parasitic nematodes. FMRFamide-like peptides (FLPs) are a large family of neuropeptides which are intimately associated with neuromuscular regulation, and our studies on flp gene function in plant-parasitic nematodes have revealed that their expression is central to coordinated locomotory activities. We propose that the high level of conservation in nervous systems across nematodes coupled with the RNAi-susceptibility of neuronally-expressed genes in plant-parasitic nematodes provides a valuable research tool which could be used to interrogate neuronal signalling processes in nematodes.
Resumo:
Platyhelminthes occupy a unique position in nerve-muscle evolution, being the most primitive of metazoan phyla. Essentially, their nervous system consists of an archaic brain and associated pairs of longitudinal nerve cords cross-linked as an orthogon by transverse commissures. Confocal imaging reveals that these central nervous system elements are in continuity with an array of peripheral nerve plexuses which innervate a well-differentiated grid work of somatic muscle as well as a complexity of myofibres associated with organs of attachment, feeding, and reproduction. Electrophysiological studies of flatworm muscles have exposed a diversity of voltage-activated ion channels that influence muscle contractile events. Neuronal cell types are mainly multi- and bi-polar and highly secretory in nature, producing a heterogeneity of vesicular inclusions whose contents have been identified cytochemically to include all three major types of cholinergic, aminergic, and peptidergic messenger molecules. A landmark discovery in flatworm neurobiology was the biochemical isolation and amino acid sequencing of two groups of native neuropeptides: neuropeptide F and FMRFamide-related peptides (FaRPs). Both families of neuropeptide are abundant and broadly distributed in platyhelminths, occurring in neuronal vesicles in representatives of all major flatworm taxa. Dual localization studies have revealed that peptidergic and cholinergic substances occupy neuronal sets separate from those of serotoninergic components. The physiological actions of neuronal messengers in flatworms are beginning to be established, and where examined, FaRPs and 5-HT are myoexcitatory, while cholinomimetic substances are generally inhibitory. There is immunocytochemical evidence that FaRPs and 5-HT have a regulatory role in the mechanism of egg assembly. Use of muscle strips and (or) muscle fibres from free-living and parasitic flatworms has provided baseline information to indicate that muscle responses to FaRPs are mediated by a G-protein-coupled receptor, and that the signal transduction pathway for contraction involves the second messengers cAMP and protein kinase C.
Resumo:
Amphibian defensive skin secretions are known to contain a plethora of biologically-active peptides that are often structural and functional analogues of vertebrate neuropeptides. Here we report the structures of two invertebrate neuropeptide analogues, IPPQFMRF amide (IF-8 amide) and EGDEDEFLRF amide (EF-10 amide), from the defensive skin secretions of two different species of African hyperoliid frogs, Kassina maculata and Phylictimantis verrucosus, respectively. These represent the first canonical FMRF amide-related peptides (FaRPs) from a vertebrate source. The cDNA encoding IF-8 amide was cloned from a skin secretion library and found to contain a single copy of the peptide located at the C-terminus of a 58 amino acid residue open-reading frame. These data extend the potential targets of the defensive arsenal of amphibian tegumental secretions to parasitic/predatory invertebrates and the novel peptides described may represent the first vertebrate peptidic endectocides.
Resumo:
BACKGROUND—Multiple sensory neuropeptides are present in human airways and may contribute to diseases such as asthma. This study quantified and characterised substance P (SP), neurokinin A (NKA), and calcitonin gene related peptide (CGRP) immunoreactivity in bronchoalveolar lavage fluid in asthmatic and normal subjects.
METHODS—Using specific radioimmunoassay (RIA), SP, NKA and CGRP were measured in bronchoalveolar lavage fluid from asthmatic subjects (n = 5), normal subjects (n = 5), atopic non-asthmatic subjects (n = 6), and asthmatic subjects four hours after allergen challenge (n = 12). Peptide immunoreactivity was characterised using high performance liquid chromatography (HPLC) and RIA.
RESULTS—No SP or CGRP immunoreactivity was detected in any of the fractions from samples after extraction, HPLC, and RIA. Non-specific binding resulted in spurious SP immunoreactivity being detected in bronchoalveolar lavage fluid when no extraction process was employed. NKA was detected in significant amounts in asthmatic (median 550, range 425-625 pg/ml) and normal subjects (median 725, range 350-1425 pg/ml). The level of NKA was significantly higher in the asthmatic subjects after allergen challenge (median 750, range 350-1250 pg/ml) than in unchallenged asthmatic subjects (median 600, range 425-600 pg/ml, p<0.01).
CONCLUSIONS—Extraction and characterisation of peptides from bronchoalveolar lavage fluid must be performed to ensure that the measured immunoreactivity represents target peptide. NKA is present in bronchoalveolar lavage fluid in high concentrations and is the predominant tachykinin. The concentrations of NKA are similar in normal subjects and subjects with mild asthma.
Resumo:
Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Two distinct families of neuropeptides are known to endow platyhelminth nervous systems-the FMRFamide-like peptides (FLPs) and the neuropepticle Fs (NPFs). Flatworm FLPs are strusturally simple, each 4-6 amino acids in length with a carboxy terminal aromatic-hydropliobic-Arg-Phe-amide motif. Thus far, four distinct flatworm FLPs have been characterized, with only one of these from a parasite. They have a widespread distribution within the central and peripheral nervous system of every flatworm examined, including neurones serving the attachment organs, the somatic Musculature and the reproductive system. The only physiological role that has been identified for flatworm FLPs is myoexcitation. Flatworm NPFs are believed to be invertebrate homologues of the vertebrate neuropeptide Y (NPY) family of peptides. Flatworm NPFs are 36-39 amino acids in length and are characterized by a caboxy terminal GRPRFarnide signature and conserved tyrosine residues at positions 10 and 17 from the carboxy terminal. Like FLPs, NPF occurs throughout flatworm nervous systems, although less is known about its biological role. While there is some evidence for a myoexcitatory action in cestodes and flukes, more compelling physiological data indicate that flatworm NPF inhibits cAMP levels in a manner that is characteristic of NPY action in vertebrates. The widespread expression of these neuropeptides in flanworm parasites highlights the potential of these signalling systems to yield new targets for novel anthelmintics. Although platyhelminth FLP and NPF receptors await identification, other molecules that play pivotal roles in neuropeptide signalling have been uncovered. These enzymes, involved in the biosynthesis and processing of flatworm neuropeptides, have recently been described and offer other distinct and attractive targets for therapeutic interference.
Resumo:
Evolving RNA interference (RNAi) platforms are providing opportunities to probe gene function in parasitic helminths using reverse genetics. Although relatively robust methods for the application of RNAi in parasitic flatworms have been established, reports of successful RNAi are confined to three genera and there are no known reports of the application of RNAi to the class Cestoda. Here we report the successful application of RNAi to a cestode. Our target species was the common ruminant tapeworm, Moniezia expansa which can significantly impact the health/productivity of cattle, sheep and goats. Initial efforts aimed to silence the neuronally expressed neuropeptide F gene (Me-npf-1), which encodes one of the most abundant neuropeptides in flatworms and a homologue of vertebrate neuropeptide Y (NPY). Double stranded (ds)RNAs, delivered by electroporation and soaking (4-8 h), failed to trigger consistent Me-npf-1 transcript knock-down in adult worms; small interfering RNAs (siRNAs) were also ineffective. Identical approaches resulted in significant and consistent transcript knock-down of actin transcript (71 +/- 4%) following soaking in Me-act-1 dsRNA. Similar successes were seen with hydrophobic lipid-binding protein (Me-lbp-1), with a dsRNA inducing significant target transcript reduction (72 +/- 5%). To confirm the validity of the observed transcript knock-downs we further investigated Me-act-1 RNAi worms for associated changes in protein levels, morphology and phenotype. Me-act-1 RNAi worms displayed significant reductions in both filamentous actin immunostaining (62 +/- 3%) and the amount of actin detected in Western blots (54 +/- 13%). Morphologically, Me-act-1 RNAi worms displayed profound tegumental disruption/blebbing. Further, muscle tension recordings from Me-act-1 RNAi worms revealed a significant reduction in both the number of worms contracting in response to praziquantel (20 +/- 12%) and in their contractile ability. These data demonstrate, to our knowledge for the first time, a functional RNAi pathway in a cestode and show that the robust knock-down of abundant gene transcripts is achievable using long dsRNAs following short exposure times. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The cholecystokinin (CCK) receptor-2 exerts very important central and peripheral functions by binding the neuropeptides cholecystokinin or gastrin. Because this receptor is a potential therapeutic target, great interest has been devoted to the identification of efficient antagonists. However, interspecies genetic polymorphism that does not alter cholecystokinin-induced signaling was shown to markedly affect activity of synthetic ligands. In this context, precise structural study of the agonist binding site on the human cholecystokinin receptor-2 is a prerequisite to elucidating the molecular basis for its activation and to optimizing properties of synthetic ligands. In this study, using site-directed mutagenesis and molecular modeling, we delineated the binding site for CCK on the human cholecystokinin receptor-2 by mutating amino acids corresponding to that of the rat homolog. By doing so, we demonstrated that, although resembling that of rat homolog, the human cholecystokinin receptor-2 binding site also displays important distinct structural features that were demonstrated by susceptibility to several point mutations (F120A, Y189A, H207A). Furthermore, docking of CCK in the human and rat cholecystokinin receptor-2, followed by dynamic simulations, allowed us to propose a plausible structural explanation of the experimentally observed difference between rat and human cholecystokinin-2 receptors.
Resumo:
Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.
Resumo:
Acetaminophen [N-acetyl-p-aminophenol (APAP)] is the most common antipyretic/analgesic medicine worldwide. If APAP is overdosed, its metabolite, N-acetyl-p-benzo-quinoneimine (NAPQI), causes liver damage. However, epidemiological evidence has associated previous use of therapeutic APAP doses with the risk of chronic obstructive pulmonary disease (COPD) and asthma. The transient receptor potential ankyrin-1 (TRPA1) channel is expressed by peptidergic primary sensory neurons. Because NAPQI, like other TRPA1 activators, is an electrophilic molecule, we hypothesized that APAP, via NAPQI, stimulates TRPA1, thus causing airway neurogenic inflammation. NAPQI selectively excites human recombinant and native (neuroblastoma cells) TRPA1. TRPA1 activation by NAPQI releases proinflammatory neuropeptides (substance P and calcitonin gene-related peptide) from sensory nerve terminals in rodent airways, thereby causing neurogenic edema and neutrophilia. Single or repeated administration of therapeutic (15-60 mg/kg) APAP doses to mice produces detectable levels of NAPQI in the lung, and increases neutrophil numbers, myeloperoxidase activity, and cytokine and chemokine levels in the airways or skin. Inflammatory responses evoked by NAPQI and APAP are abated by TRPA1 antagonism or are absent in TRPA1-deficient mice. This novel pathway, distinguished from the tissue-damaging effect of NAPQI, may contribute to the risk of COPD and asthma associated with therapeutic APAP use.-Nassini, R., Materazzi, S., Andre, E., Sartiani, L., Aldini, G., Trevisani, M., Carnini, C., Massi, D., Pedretti, P., Carini, M., Cerbai, E., Preti, D., Villetti, G., Civelli, M., Trevisan, G., Azzari, C., Stokesberry, S., Sadofsky, L., McGarvey, L., Patacchini, R., Geppetti, P. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J. 24, 4904-4916 (2010). www.fasebj.org
Resumo:
Measuring neuropeptides in biological tissues by radioimmunoassay requires efficient extraction that maintains their immunoreactivity. Many different methods for extraction have been described, but there is little information on optimal extraction methods for individual neuropeptides from human dental pulp tissue. The aim was therefore to identify an effective extraction procedure for three pulpal neuropeptides: substance P. neurokinin A and calcitonin gene-related peptide. Tissue was obtained from 20 pulps taken from teeth freshly extracted for orthodontic reasons. The pulp samples were divided into four equal groups and different extraction methods were used for each group. Boiling whole pulp in acetic acid gave the highest overall yield and, in addition, offered an easy and rapid means of pulp tissue processing. The use of protease inhibitors did not increase the recovery of the immunoreactive neuropeptides but did provide the best combination of maximal recoveries and minimal variability. These results should be useful for planning the extraction of these neuropeptides from human pulp tissue in future studies. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
FMRFamide-like peptides (FLPs) are a diverse group of neuropeptides that are expressed abundantly in nematodes. They exert potent physiological effects on locomotory, feeding and reproductive musculature and also act as neuromodulators. However, little is known about the specific expression patterns and functions of individual peptides. The current study employed rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) to characterize flp genes from infective juveniles of the root knot nematodes, Meloidogyne incognita and Meloidogyne minor. The peptides identified from these transcripts are sequelogs of FLPs from the free-living nematode, Caenorhabditis elegans; the genes have therefore been designated as Mi-flp-1, Mi-flp-7, Mi-flp-12, Mm-flp-12 and Mi-flp-14. Mi-flp-1 encodes five FLPs with the common C-terminal moiety, NFLRFamide. Mi-flp-7 encodes two copies of APLDRSALVRFamide and APLDRAAMVRFamide and one copy of APFDRSSMVRFamide. Mi-flp-12 and Mm-flp-12 encode the novel peptide KNNKFEFIRFamide (a longer version of RNKFEFIRFamide found in C. elegans). Mi-flp-14 encodes a single copy of KHEYLRFamide (commonly known as AF2 and regarded as the most abundant nematode FLP), and a single copy of the novel peptide KHEFVRFamide. These FLPs share a high degree of conservation between Meloidogyne species and nematodes from other clades, including those of humans and animals, perhaps suggesting a common neurophysiological role which may be exploited by novel drugs. FLP immunoreactivity was observed for the first time in Meloidogyne, in the circumpharyngeal nerve ring, pharyngeal nerves and ventral nerve cord. Additionally, in situ hybridization revealed Mi-flp-12 expression in an RIR-like neuron and Mi-flp-14 expression in SMB-like neurons, respectively. These localizations imply physiological roles for FLP-12 and FLP-14 peptides, including locomotion and sensory perception.
Resumo:
Nematodes include both free-living species such as Caenorhabditis elegans and major parasites of humans, livestock and plants. The apparent simplicity and uniformity of their nervous system belies a rich diversity of putative signalling molecules,particularly neuropeptides. This new appreciation stems largely from the genome-sequencing project with C. elegans, which is due to be completed by the end of 1998. The project has provided additional insights into other aspects of nematode neurobiology, as have studies on the mechanism of action of anthelmintics. Here, progress on the identification, localization, synthesis and physiological actions of transmitters identified in nematodes is explored.
Resumo:
The localisation and distribution of 5-hydroxytryptamine (5-HT, or serotonin) and neuropeptides in the nervous system of the protoscolex of the hydatid organism Echinococcus granulosus were determined by an indirect immunofluorescence technique. Nerve-cell bodies immunoreactive for 5-HT occurred in the lateral ganglia and in association with the lateral longitudinal nerve cords. 5-HT immunostaining was also evident in the central nerve ring, in the rostellar nerves and in the nerve plexus innervating the suckers. Of the antisera used to screen the protoscolex for neuropeptide immunoreactivity (IR), immunostaining was obtained with those raised against pancreatic polypeptide (PP), peptide YY (PYY), substance P (SP), peptide histidine isoleucine (PI-II) and vasoactive intestinal peptide (VIP). The most extensive pattern of IR occurred with antisera to PP and PYY. Immunoreactive nerve elements were evident in the lateral ganglia, central nerve ring, rostellar nerves, rostellar ganglia, sucker plexus and longitudinal nerve cords. The distribution of SP-, PHI- and VIP-IRs was more restricted: SP-IR occurred in the lateral ganglia and sucker nerves, whilst PHI- and VIP-immunoreactive nerve elements were associated with the lateral longitudinal nerve cords. Protoscoleces cultured in vitro for 29 days were also examined and neuroanatomical changes noted. A greater development of the longitudinal nerve cords and their cross-connectives in the body of the worm was evident, and a group of nerve cells were seen to develop at the posterior end of the main lateral nerve cords.
Resumo:
The localization and distribution of neuropeptides and an indoleamine (serotonin or 5-hydroxytryptamine) in the enteric nervous system (ENS) of the pig roundworm, Ascaris suum, have been determined by the application of an indirect immunofluorescence technique in conjunction with confocal scanning laser microscopy. Whole-mount preparations of pharyngeal, intestinal and rectal regions were screened with antisera to 23 vertebrate peptides, 2 invertebrate peptides and serotonin(= 5-HT). Positive immunoreactivity (IR) was obtained with antisera to pancreatic polypeptide (PP), peptide YY (PYY), FMRFamide, gastrin and serotonin. The only IR observed in the ENS was that evident in the nerve supply to the pharynx and rectal region; no IR was associated with any region of the intestine. The most extensive patterns of IR occurred with antisera to PW, FMRFamide and serotonin. In the pharyngeal component of the ENS, IR was evident in the lateral and dorsal longitudinal pharyngeal nerves, pharyngeal commissures, nerve plexus, and associated nerve cells and fibres. In contrast, the distribution of IR to the PP and gastrin antisera was more restricted and displayed a lower intensity of immunostaining. The other component of the ENS, the rectal enteric system, only yielded immunostaining to FMRFamide. The possible role of neuropeptides and serotonin in the nutritional biology of nematodes is discussed.