979 resultados para NEURAL MECHANISMS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les tics affectent 1% des individus et sont associés avec une diminution de la qualité de vie. L’importante hétérogénéité phénoménologique retrouvée chez ceux-ci représente un obstacle majeur pour l’évaluation et le traitement de ces symptômes, et explique potentiellement la présence de données neurobiologiques contradictoires. Certaines variables rarement contrôlées, comme la complexité des tics et la demande motrice des tâches pourraient expliquer l’hétérogénéité de ces résultats. Une meilleure compréhension des processus cognitifs affectés pourrait être atteinte par l’étude de la chronométrie des événements cérébraux. Ainsi, notre objectif était d’évaluer l’impact de la complexité des tics et du type de réponse sur les potentiels électrocorticaux liés à l’inhibition, à l’attention et à la mémoire de patients tics. Nous avons comparé 12 patients présentant des tics simples avec 12 patients atteints de tics complexes, qui furent appariés à 15 participants contrôles sains. Deux tâches oddball furent accomplies, dont l’une exigeait une réponse motrice et l’autre une réponse non-motrice (compter le nombre de stimuli). Durant ces tâches, nous avons enregistré des composantes électrocorticales indexant des processus d’attention (P200), d’inhibition (N200) et de mémoire (P300). Pour la tâche non-motrice, nos résultats révélèrent une N200 plus ample chez les deux groupes de patients tics et une P300 réduite seulement chez ceux avec des tics simples. Quant à la tâche motrice, les deux groupes de patients tics présentaient une P300 réduite. Selon nos résultats, la complexité des tics et la demande motrice des tâches peuvent affecter les mécanismes neuronaux sous-tendant les différentes étapes du traitement de l’information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La capacité du système visuel humain à compléter une image partiellement dévoilée et à en dériver une forme globale à partir de ses fragments visibles incomplets est un phénomène qui suscite, jusqu’à nos jours, l’intérêt de nombreux scientifiques œuvrant dans différents milieux de recherche tels que l’informatique, l’ingénierie en intelligence artificielle, la perception et les neurosciences. Dans le cadre de la présente thèse, nous nous sommes intéressés spécifiquement sur les substrats neuronaux associés à ce phénomène de clôture perceptive. La thèse actuelle a donc pour objectif général d’explorer le décours spatio-temporel des corrélats neuronaux associés à la clôture perceptive au cours d’une tâche d’identification d’objets. Dans un premier temps, le premier article visera à caractériser la signature électrophysiologique liée à la clôture perceptive chez des personnes à développement typique dans le but de déterminer si les processus de clôture perceptive reflèteraient l’interaction itérative entre les mécanismes de bas et de haut-niveau et si ceux-ci seraient sollicités à une étape précoce ou tardive lors du traitement visuel de l’information. Dans un deuxième temps, le second article a pour objectif d’explorer le décours spatio-temporel des mécanismes neuronaux sous-tendant la clôture perceptive dans le but de déterminer si les processus de clôture perceptive des personnes présentant un trouble autistique se caractérisent par une signature idiosyncrasique des changements d’amplitude des potentiels évoqués (PÉs). En d’autres termes, nous cherchons à déterminer si la clôture perceptive en autisme est atypique et nécessiterait davantage la contribution des mécanismes de bas-niveau et/ou de haut-niveau. Les résultats du premier article indiquent que le phénomène de clôture perceptive est associé temporellement à l’occurrence de la composante de PÉs N80 et P160 tel que révélé par des différences significatives claires entre des objets et des versions méconnaissables brouillées. Nous proposons enfin que la clôture perceptive s’avère un processus de transition reflétant les interactions proactives entre les mécanismes neuronaux œuvrant à apparier l’input sensoriel fragmenté à une représentation d’objets en mémoire plausible. Les résultats du second article révèlent des effets précoces de fragmentation et d’identification obtenus au niveau de composantes de potentiels évoqués N80 et P160 et ce, en toute absence d’effets au niveau des composantes tardives pour les individus avec autisme de haut niveau et avec syndrome d’Asperger. Pour ces deux groupes du trouble du spectre autistique, les données électrophysiologiques suggèrent qu’il n’y aurait pas de pré-activation graduelle de l’activité des régions corticales, entre autres frontales, aux moments précédant et menant vers l’identification d’objets fragmentés. Pour les participants autistes et avec syndrome d’Asperger, les analyses statistiques démontrent d’ailleurs une plus importante activation au niveau des régions postérieures alors que les individus à développement typique démontrent une activation plus élevée au niveau antérieur. Ces résultats pourraient suggérer que les personnes du spectre autistique se fient davantage aux processus perceptifs de bas-niveau pour parvenir à compléter les images d’objets fragmentés. Ainsi, lorsque confrontés aux images d’objets partiellement visibles pouvant sembler ambiguës, les individus avec autisme pourraient démontrer plus de difficultés à générer de multiples prédictions au sujet de l’identité d’un objet qu’ils perçoivent. Les implications théoriques et cliniques, les limites et perspectives futures de ces résultats sont discutées.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated whether it is possible to control the temporal window of attention used to rapidly integrate visual information. To study the underlying neural mechanisms, we recorded ERPs in an attentional blink task, known to elicit Lag-1 sparing. Lag-1 sparing fosters joint integration of the two targets, evidenced by increased order errors. Short versus long integration windows were induced by showing participants mostly fast or slow stimuli. Participants expecting slow speed used a longer integration window, increasing joint integration. Difference waves showed an early (200 ms post-T2) negative and a late positive modulation (390 ms) in the fast group, but not in the slow group. The modulations suggest the creation of a separate event for T2, which is not needed in the slow group, where targets were often jointly integrated. This suggests that attention can be guided by global expectations of presentation speed within tens of milliseconds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experientially opening oneself to pain rather than avoiding it is said to reduce the mind's tendency toward avoidance or anxiety which can further exacerbate the experience of pain. This is a central feature of mindfulness-based therapies. Little is known about the neural mechanisms of mindfulness on pain. During a meditation practice similar to mindfulness, functional magnetic resonance imaging was used in expert meditators (> 10,000 h of practice) to dissociate neural activation patterns associated with pain, its anticipation, and habituation. Compared to novices, expert meditators reported equal pain intensity, but less unpleasantness. This difference was associated with enhanced activity in the dorsal anterior insula (aI), and the anterior mid-cingulate (aMCC) the so-called ‘salience network’, for experts during pain. This enhanced activity during pain was associated with reduced baseline activity before pain in these regions and the amygdala for experts only. The reduced baseline activation in left aI correlated with lifetime meditation experience. This pattern of low baseline activity coupled with high response in aIns and aMCC was associated with enhanced neural habituation in amygdala and pain-related regions before painful stimulation and in the pain-related regions during painful stimulation. These findings suggest that cultivating experiential openness down-regulates anticipatory representation of aversive events, and increases the recruitment of attentional resources during pain, which is associated with faster neural habituation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Learned helplessness is a maladaptive response to uncontrollable stress characterized by impaired motor escape responses, reduced motivation and learning deficits. There are important individual differences in the likelihood of becoming helpless following exposure to uncontrollable stress but little is known about the neural mechanisms underlying these individual differences. Here we used structural MRI to measure gray and white matter in individuals with chronic pain, a population at high risk for helplessness due to prolonged exposure to a poorly controlled stressor (pain). Given that self-reported helplessness is predictive of treatment outcomes in chronic pain, understanding such differences might provide valuable clinical insight. We found that the magnitude of self-reported helplessness correlated with cortical thickness in the supplementary motor area (SMA) and midcingulate cortex, regions implicated in cognitive aspects of motor behavior. We then examined the white matter connectivity of these regions and found that fractional anisotropy of connected white matter tracts along the corticospinal tract was associated with helplessness and mediated the relationship between SMA cortical thickness and helplessness. These data provide novel evidence that links individual differences in the motor output pathway with perceived helplessness over a chronic and poorly controlled stressor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In life, we must often learn new associations to people, places, or things we already know. The current fMRI study investigated the neural mechanisms underlying emotional memory updating. Nineteen participants first viewed negative and neutral pictures and learned associations between those pictures and other neutral stimuli, such as neutral objects and encoding tasks. This initial learning phase was followed by a memory updating phase, during which participants learned picture-location associations for old pictures (i.e., pictures previously associated with other neutral stimuli) and new pictures (i.e., pictures not seen in the first phase). There was greater frontopolar/orbito-frontal (OFC) activity when people learned picture–location associations for old negative pictures than for new negative pictures, but frontopolar OFC activity did not significantly differ during learning locations of old versus new neutral pictures. In addition, frontopolar activity was more negatively correlated with the amygdala when participants learned picture–location associations for old negative pictures than for new negative or old neutral pictures. Past studies revealed that the frontopolar OFC allows for updating the affective values of stimuli in reversal learning or extinction of conditioning [e.g., Izquierdo, A., & Murray, E. A. Opposing effects of amygdala and orbital PFC lesions on the extinction of instrumental responding in macaque monkeys. European Journal of Neuroscience, 22, 2341–2346, 2005]; our findings suggest that it plays a more general role in updating associations to emotional stimuli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies have documented that self-determined choice does indeed enhance performance. However, the precise neural mechanisms underlying this effect are not well understood. We examined the neural correlates of the facilitative effects of self-determined choice using functional magnetic resonance imaging (fMRI). Participants played a game-like task involving a stopwatch with either a stopwatch they selected (self-determined-choice condition) or one they were assigned without choice (forced-choice condition). Our results showed that self-determined choice enhanced performance on the stopwatch task, despite the fact that the choices were clearly irrelevant to task difficulty. Neuroimaging results showed that failure feedback, compared with success feedback, elicited a drop in the vmPFC activation in the forced-choice condition, but not in the self-determined-choice condition, indicating that negative reward value associated with the failure feedback vanished in the self-determined-choice condition. Moreover, the vmPFC resilience to failure in the self-determined-choice condition was significantly correlated with the increased performance. Striatal responses to failure and success feedback were not modulated by the choice condition, indicating the dissociation between the vmPFC and striatal activation pattern. These findings suggest that the vmPFC plays a unique and critical role in the facilitative effects of self-determined choice on performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maternal depression is associated with increased risk for offspring mood and anxiety disorders. One possible impact of maternal depression during offspring development is on the emotional autobiographical memory system. We investigated the neural mechanisms of emotional autobiographical memory in adult offspring of mothers with postnatal depression (N = 16) compared to controls (N = 21). During fMRI, recordings of participants describing one pleasant and one unpleasant situation with their mother and with a companion, were used as prompts to re-live the situations. Compared to controls we predicted the PND offspring would show: greater activation in medial and posterior brain regions implicated in autobiographical memory and rumination; and decreased activation in lateral prefrontal cortex and decreased connectivity between lateral prefrontal and posterior regions, reflecting reduced control of autobiographical recall. For negative situations, we found no group differences. For positive situations with their mothers, PND offspring showed higher activation than controls in left lateral prefrontal cortex, right frontal pole, cingulate cortex and precuneus, and lower connectivity of right middle frontal gyrus, left middle temporal gyrus, thalamus and lingual gyrus with the posterior cingulate. Our results are consistent with adult offspring of PND mothers having less efficient prefrontal regulation of personally relevant pleasant autobiographical memories.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to regulate emotion is crucial to promote well-being. Evidence suggests that the medial prefrontal cortex (mPFC) and adjacent anterior cingulate (ACC) modulate amygdala activity during emotion regulation. Yet less is known about whether the amygdala-mPFC circuit is linked with regulation of the autonomic nervous system and whether the relationship differs across the adult lifespan. The current study tested the hypothesis that heart rate variability (HRV) reflects the strength of mPFC-amygdala interaction across younger and older adults. We recorded participants’ heart rates at baseline and examined whether baseline HRV was associated with amygdala-mPFC functional connectivity during rest. We found that higher HRV was associated with stronger functional connectivity between the amygdala and the mPFC during rest across younger and older adults. In addition to this age-invariant pattern, there was an age-related change, such that greater HRV was linked with stronger functional connectivity between amygdala and ventrolateral PFC (vlPFC) in younger than in older adults. These results are in line with past evidence that vlPFC is involved in emotion regulation especially in younger adults. Taken together, our results support the neurovisceral integration model and suggest that higher heart rate variability is associated with neural mechanisms that support successful emotional regulation across the adult lifespan.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been proposed that the ascending dorsal raphe (DR)-serotonergic (5-HT) pathway facilitates conditioned avoidance responses to potential or distal threat, while the DR-periventricular 5-HT pathway inhibits unconditioned flight reactions to proximal danger. Dysfunction on these pathways would be, respectively, related to generalized anxiety (GAD) and panic disorder (PD). To investigate this hypothesis, we microinjected into the rat DR the benzodiazepine inverse receptor agonist FG 7142, the 5-HT1A receptor agonist 8-OH-DPAT or the GABA(A) receptor agonist muscimol. Animals were evaluated in the elevated T-maze (ETM) and light/dark transition test. These models generate defensive responses that have been related to GAD and PD. Experiments were also conducted in the ETM 14 days after the selective lesion of DR serotonergic neurons by 5,7-dihydroxytriptamine (DHT). In all cases, rats were pre-exposed to one of the open arms of the ETM 1 day before testing. The results showed that FG 7142 facilitated inhibitory avoidance, an anxiogenic effect, while impairing one-way escape, an anxiolytic effect. 8-OH-DPAT, muscimol, and 5,7-DHT-induced lesions acted in the opposite direction, impairing inhibitory avoidance while facilitating one-way escape from the open arm. In the light/dark transition, 8-OH-DPAT and muscimol increased the time spent in the lighted compartment, an anxiolytic effect. The data supports the view that distinct DR-5-HT pathways regulate neural mechanisms underlying GAD and PD. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A maioria dos estudos pré-clínicos e clínicos aponta a nicotina como o principal agente responsável pelo desenvolvimento da dependência ao tabaco. Muitos trabalhos têm demonstrado que as bases neurais da dependência à nicotina são semelhantes àquelas das outras drogas de abuso. A nicotina induz preferência condicionada por lugar e auto-administração e, portanto, atua como reforçador positivo, esse efeito parece ser mediado pelo sistema dopaminérgico mesolímbico. A nicotina também induz à sensibilização comportamental que é provavelmente resultante de alterações da expressão gênica do núcleo acumbens induzidas pela exposição prolongada a essa substância. A suspensão do uso de nicotina resulta em síndrome de abstinência. As evidências indicam que esses sinais e sintomas sejam mediados por receptores colinérgicos nicotínicos centrais e periféricos. Outros neurotransmissores, como por exemplo a serotonina e os peptídeos opióides, também podem estar envolvidos na mediação da dependência e síndrome de abstinência à nicotina. A revisão da literatura mostra a complexidade dos efeitos da nicotina no organismo. A integração entre as abordagens comportamental, neuroquímica e molecular possibilitará a compreensão dos mecanismos neurais da dependência ao tabaco e fornecerá as bases para o desenvolvimento racional de agentes terapêuticos que possam ser utilizados para o tratamento da dependência e síndrome de abstinência ao tabaco.