970 resultados para NEAR-FIELD STRUCTURE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed investigation on planar two dimensional metallodielectric dipole arrays with enhanced near-fields for sensing applications was carried out. Two approaches for enhancing the near-fields and increasing the quality factor were studied. The reactive power stored in the vicinity of the array at resonance increases rapidly with increasing periodicity. Higher quality factors are produced as a result. The excitation of the odd mode in the presence of a perturbation gives rise to a sharp resonance with near-field enhanced by at least an order of magnitude compared to unperturbed arrays. The trade-off between near-field enhancement and thermal losses was also studied, and the effect of supporting dielectric layers on thermal losses and quality factors were examined. Secondary transmissions due to the dielectric alone were found to enhance and reduce cyclically the quality factor as a function of the thickness of the dielectric material. The performance of a perturbed frequency selective surface in sensing nearby materials was investigated. Finally, unperturbed and perturbed arrays working at infrared frequencies were demonstrated experimentally. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3604785]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measure the two-dimensional, near-field spatial distribution of a 140-Angstrom nickel-like silver x-ray laser at the output aperture with high magnification using a curved multilayer x-ray mirror to image the output onto an x-ray charge-coupled device camera. Lasing is created by illuminating silver slab targets with a pair of 75 ps laser pulses separated by 2.2 nsec from the Vulcan laser. The two-dimensional, high-resolution, spatial image shows the x-ray laser source size and its position relative to the target surface. A dramatic change in both the position and source size are observed for the refraction compensating curved target as compared with the flat targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here a detailed study of the complex relationship between the electromagnetic near-field and far-field responses of "real" nanostructured metallic surfaces. The near-field and far-field responses are specified in terms of (spectra of) the surface-enhanced Raman-scattering enhancement factor (SERS EF) and optical extinction, respectively. First, it is shown that gold nanorod- and nanotube-array substrates exhibit three distinct localized surface plasmon resonances (LSPRs): a longitudinal, a transverse, and a cavity mode. The cavity mode simultaneously has the largest impact on the near-field behavior (as observed through the SERS EF) and the weakest optical interaction: It has a "near-field-type" character. The transverse and longitudinal modes have a significant impact on the far-field behavior but very little impact on SERS: They have a "far-field-type" character. We confirm the presence of the cavity mode using a combination of SERS EF spectra, electron microscopy, and electromagnetic modeling and thus clearly illustrate and explain the (lack of) correlation between the SERS EF spectra and the optical response in terms of the contrasting character of the three LSPRs. In doing so, we experimentally demonstrate that, for a surface that supports multiple LSPRs, the near-field and far-field properties can in fact be tuned almost independently. It is further demonstrated that small changes in geometrical parameters that tune the spectral location of the LPSRs can also drastically influence the character of these modes, resulting in certain unusual behavior, such as the far-field resonance redshift as the near-field resonance blueshifts. DOI: 10.1103/PhysRevX.3.011001

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the mechanisms for fluorescence enhancement and energy transfer near a gold tip in apertureless scanning near-field optical microscopy. Using a simple quasi-static model, we show that the observed enhancement of fluorescence results from competition between enhancement and quenching, and is dependent on a range of experimental parameters. We find good qualitative agreement with the results of measurements of the effect of both sharp and blunt tips on quantum dot fluorescence, and provide a demonstration of tip-enhanced fluorescence imaging with 60 nm resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical signals measured in apertureless scanning near field optical microscopy (ASNOM) under ambient conditions are found to be affected significantly by the thin water layer absorbed on the surface under investigation, the presence of which is detected through measurements of the shear force experienced by the tip. This water layer also results in a large hysteresis between optical signals measured during approach and withdrawal of the tip to the sample surface. The role of this effect in ASNOM is anticipated to be significant, with the possibility of resultant topographically induced artefacts for ASNOM involving intermittent contact of tip and sample, but also providing a potential mechanism for nanoscale optical resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We simulate and discuss the local electric-field enhancement in a system of a dielectric nanoparticle placed very near to a metallic substrate. We use finite-element numerical simulations in order to understand the field-enhancement mechanism in this dielectric NP-on-mirror system. Under appropriate excitation conditions, the gap between the particle and the substrate becomes a "hot spot", i.e., a region of intense electromagnetic field. We also show how the optical properties of the dielectric NP placed on a metallic substrate affect the plasmonic field enhancement in the nanogap and characterize the confinement in the gap. Our study helps to understand and design systems with dielectric NPs on metallic substrates which can be equally as effective for SERS, fluorescence, and nonlinear phenomena as conventional all plasmonic structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is demonstrated that the electromagnetic (EM) transmission through a subwavelength or non-resonant aperture in a conductive screen can be dramatically enhanced by loading it with folded metallic strips exhibiting resonant properties. When illuminated by an EM plane wave these loaded apertures enable very tight, subwavelength, collimation of the EM power in the near field zone. We propose planar and quasi-planar resonant insertion geometries that should allow, for the first time, two-dimensional dual-polarization subwavelength field confinement along with ability to focus both electric and magnetic fields. The proposed technique for resonance transmission enhancement and near field confinement forms a basis for a new class of microwave near field imaging probe with subwavelength resolution capable of operating over a wide range of imaging distances (0.05–$0.25lambda$). Measurement results demonstrate the possibility of high contrast (more than 3 dB in amplitude and 40 degrees in phase) near field subwavelength imaging of 2D and 3D resonant and non-resonant metallic and dielectric targets in free space and in moderately lossy layered media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel type of microwave probes based on the loaded aperture geometry has been proposed and experimentally evaluated for dielectrics characterisation and high-resolution near-field imaging. Experimental results demonstrate the possibility of very accurate microwave spectroscopic characterisation of thin lossy dielectric samples and biological materials containing water. High-resolution images of the subwavelength lossy dielectric strips and wet and dry leaves have been obtained with amplitude contrast around 10-20 dB and spatial resolution better than one-tenth of a wavelength in the near-field zone. A microwave imaging scenario for the early-stage skin cancer identification based on the artificial dielectric model has also been explored. This model study shows that the typical resolution of an artificial malignant tumour with a characteristic size of one-tenth of a wavelength can be discriminated with at least 6 dB amplitude and 50° phase contrast from the artificial healthy skin and with more than 3 dB contrast from a benign lesion of the same size. It has also been demonstrated that the proposed device can efficiently deliver microwave energy to very small, subwavelength, focal areas which is highly sought in the microwave hyperthermia applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel microwave high-resolution near-field imaging technique is proposed and experimentally evaluated in reflectometry imaging scenarios involving planar metal-dielectric structures. Two types of resonance near field probes-a small helix antenna and a loaded subwavelength slot aperture are studied in this paper. These probes enable very tight spatial field localization with the full width at half maximum around one tenth of a wavelength, λ, at λ/100-λ/10 standoff distance. Importantly, the proposed probes permit resonance electromagnetic coupling to dielectric or printed conductive patterns, which leads to the possibility of very high raw image resolution with imaged feature-to-background contrast greater than 10-dB amplitude and 50° phase. In addition, high-resolution characterization of target geometries based on the cross correlation image processing technique is proposed and assessed using experimental data. It is shown that printed elements features with subwavelength size ~λ/15 or smaller can be characterized with at least 10-dB resolution contrast.