774 resultados para NANOCRYSTALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an alternative medium of transparent upconverting colloid containing lanthanide ion doped NaYF4 nanocrystals for three-dimensional (3D) volumetric display. The colloids exhibit tunable upconversion luminescence with a wide spectrum of colors by adjusting the doping concentrations of the nanocrystals and the compositions of the colloids. Our preliminary experimental result indicates that an upconverting colloid-based 3D volumetric display using a convergent, near infrared laser beam to induce a localized luminescent spot near the focus is technically feasible. Therefore arbitrary 3D objects can be created inside the upconverting colloid by use of computer controlled 3D scanning systems. (C) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Zn0.95-xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an autocombustion method. X-ray absorption spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry and Ni 2p core-level photoemission spectroscopy analyses revealed that some of the nickel ions were substituted for Zn2+ into the ZnO matrix while others gave birth to NiO nanoclusters embedded in the ZnO particles. The Zn0.95Ni0.05O sample showed no enhancement of room-temperature ferromagnetism after Al doping. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a simple and flexible electron-beam coevaporation (EBCE) technique has been reported of fabrication of the silicon nanocrystals (Si NCs) and their application to the nonvolatile memory. For EBCE, the Si and SiOx(x=1 or 2) were used as source materials. Transmission electron microscopy images and Raman spectra measurement verified the formation of the Si NCs. The average size and area density of the Si NCs can be adjusted by increasing the Si:O weight ratio in source material, which has a great impact on the crystalline volume fraction of the deposited film and on the charge storage characteristics of the Si NCs. A memory window as large as 6.6 V under +/- 8 V sweep voltage was observed for the metal-oxide-semiconductor capacitor structure with the embedded Si NCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed analysis of the photoluminescence (PL) from Si nanocrystals (NCs) embedded in a silicon-rich SiO2 matrix is reported. The PL spectra consist of three Gaussian bands (peaks A,B, and C), originated from the quantum confinement effect of Si NCs, the interface state effect between a Si NC and a SiO2 matrix, and the localized state transitions of amorphous Si clusters, respectively. The size and the surface chemistry of Si NCs are two major factors affecting the transition of the dominant PL origin from the quantum confinement effect to the interface state recombination. The larger the size of Si NCs and the higher the interface state density (in particular, Si = O bonds), the more beneficial for the interface state recombination process to surpass the quantum confinement process, in good agreement with Qin's prediction in Qin and Li [Phys. Rev. B 68, 85309 (2003)]. The realistic model of Si NCs embedded in a SiO2 matrix provides a firm theoretical support to explain the transition trend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mn-doped ZnS nanocrystals of about 3 nm diameter were synthesized by a wet chemical method. X-ray diffraction (XRD) measurements showed that the nanocrystals have the structure of cubic zinc blende. The broadening of the XRD lines is indicative of nanomaterials. Room temperature photoluminescence (PL) spectrum of the undoped sample only exhibited a defected-related blue emission band. But for the doped samples, an orange emission from the Mn2+ T-4(1)-(6)A(1) transition was also observed, apart from the blue emission. The peak position (600 nm) of the Mn2+ emission was shifted to longer wavelength compared to that (584 nm) of bulk ZnS:Mn. With the increase of the Mn2+ concentration, the PL of ZnS:Mn was significantly enhanced. The concentration quenching effect was not observed in our experiments. Such PL phenomena were attributed to the absence of Mn2+ pairs in a single ZnS:Mn nanocrystal, considering the nonradiative energy transfer between Mn2+ ions based on the Poisson approximation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a solution-based chemical method, we have prepared ZnS nanocrystals doped with high concentration of Mn2+. The X-ray diffraction analysis confirmed a zinc blende structure. The average size was about 3 nm. Photoluminescence spectrum showed room temperature emission in the visible spectrum, which consisted of the defect-related emission and the T-4(1)-(6)A(1) emission of Mn2+ ions. Compared with the undoped sample, the luminescence of the ZnS:Mn sample is enhanced by more than an order of magnitude, which indicated that the Mn2+ ions can efficiently boost the luminescence of ZnS nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlations between Si nanocrystal (nc-Si) related photoluminescence (PL), Er3+ emission and nonradiative defects in the Er-doped SiO2 films containing nc-Si (SRSO) are studied. Upon 514.5 nm laser excitation the erbium-doped SRSO samples exhibit PL peaks at around 0.8 and 1.54 mum, which can be assigned to the electron-hole recombination in nc-Si and the intra-4f transition in Er3+, respectively. With increasing Er3+ content in the films, Er3+ emission becomes intense while the PL at 0.8 mum decreases, suggesting a strong coupling of nc-Si and Er 31 ions. Hydrogen plasma treatment for the samples improve the PL intensities of the 0.8 and 1.54 mum bands, indicating H passivation for the nonradiative defects existing in the samples. Further-more, from the effect of hydrogen treatment for the samples, we observe variation of the number of nonradiative defects with annealing temperatures. (C) 2003 Elsevier Science B.V. All rights reserved.