351 resultados para NADH
Resumo:
The white-spotted eagle ray Aetobatus narinari is a species complex that occurs circumglobally throughout warm-temperate waters. Aetobatus narinari is semi-pelagic and large (up to 300 cm disc width), suggesting high dispersal capabilities and gene flow on a wide spatial scale. Sequence data from two mitochondrial genes, cytochrome b (cytb) and NADH dehydrogenase subunit 4 (ND4), were used to determine the genetic variability within and among 18 sampling locations in the central Indo-Pacific biogeographical region. Populations in the Indo-Pacific were highly genetically structured with c. 70% of the total genetic variation found among three geographical regions (East China Sea, Southeast Asia and Australia). FST was 0.64 for cytb and 0.53 for ND4, with φST values being even larger, that is, 0.78 for cytb and 0.65 for ND4. This high-level genetic partitioning provides strong evidence against extensive gene flow in A. narinari. The degree of genetic population structuring in the Indo-Pacific was similar to that found on a global scale. Global FST was 0.63 for cytb and 0.57 for ND4, and global φST values were 0.94 for cytb and 0.82 for ND4. This suggests that the A. narinari complex may be more speciose than the two or three species proposed to date. Further sampling and genetic analyses are likely to uncover the ‘evolutionarily significant’ and ‘management’ units that are critical to determine the susceptibilities of individual populations to regional fishing pressures and to provide advice on management options. Network analyses showed a close genetic relationship between haplotypes from the central Indo-Pacific and South Africa, providing support for a proposed dispersal pathway from the possible centre of origin of the A. narinari species complex in the Indo-Pacific into the Atlantic Ocean.
Resumo:
Microsomal b-type hemoprotein designated, cytochrome b555 of C-Roseus seedlings was solubilized using detergents and purified by a combination of ion exchange chromatography and gel filtration to a specific content of 18.5 nmol per mg of protein. The purified cytochrome b555 was homogeneous and estimated to have an apparent molecular weight of 16500 on SDS-PAGE. The absorption spectrum of the reduced form has major peaks at 424, 525 and 555 nm. The α-band of the reduced form is asymmetric with a pronounced shoulder at 559 nm. The spectrum of the pyridine ferrohemochrome shows absorption peaks at 557, 524 and 418 nm indicating that the cytochrome has protoheme prosthetic group. The purified cytochrome is autoxidizable and does not combine with carbon monoxide, azide or cyanide. It is reducible by NADH in the presence of NADH-cytochrome b555 reductase partially purified from C-Roseus microsomes.
Resumo:
Details of the metabolism of alpha-terpineol by Pseudomonas incognita are presented. Degradation of alpha-terpineol by this organism resulted in the formation of a number of acidic and neutral metabolites. Among the acidic metabolites, beta-isopropyl pimelic acid, 1-hydroxy-4-isopropenyl-cyclohexane-1-carboxylic acid, 8-hydroxycumic acid, oleuropeic acid, cumic acid, and p-isopropenyl benzoic acid have been identified. Neutral metabolites identified were limonene, p-cymene-8-ol, 2-hydroxycineole, and uroterpenol. Cell-free extracts prepared from alpha-terpineol adapted cells were shown to convert alpha-terpineol, p-cymene-8-ol, and limonene to oleuropeic acid, 8-hydroxycumic acid, and perillic acid, respectively, in the presence of NADH. The same cell-free extract contained NAD+ -specific dehydrogenase(s) which converted oleuropyl alcohol, p-cymene-7,8-diol, and perillyl alcohol to their corresponding 7-carboxy acids. On the basis of various metabolites isolated from the culture medium, together with the supporting evidence obtained from enzymatic and growth studies, it appears that P. incognita degrades alpha-terpineol by at least three different routes. While one of the pathways seems to operate via oleuropeic acid, a second may be initiated through the aromatization of alpha-terpineol. The third pathway may involve the formation of limonene from alpha-terpineol and its further metabolism.
Resumo:
The azodye 2-methyl-4-dimethylaminoazobenzene inhibited oxidation and phosphorylation in tightly coupled rat liver mitochondria. Phosphorylation was more sensitive to the inhibitory action of the azodye than was the oxidation of succinate or ascorbate. The oxidation of NAD+-linked substrate was severely inhibited by the compound. In submitochondrial particles, only NADH oxidation was sensitive. The site of inhibition has been identified to lie between the dehydrogenase flavoprotein and ubiquinone.
Resumo:
Rat lung microsomes were shown to ω-hydroxylate acyclic monoterpene alcohols in the presence of NADPH and O2. NADH could neither support hydroxylation efficiently nor did it show synergistic effect. The hydroxylase activity was greater in microsomes prepared from β-naphthoflavone (BNF)-treated rats than from phenobarbital (PB)-treated or control microsomal preparations. Hydroxylation was specific to the C-8 position in geraniol and has a pH optimum of 7.8. The inhibition of the hydroxylase activity by SKF-525A, CO, N-ethylmaleimide, ellipticine, α-naphthoflavone, cyt. Image and p-CMB indicated the involvement of the cyt. P-450 system. However, NaN3 stimulated the hydroxylase activity to a significant level. Rat kidney microsomes were also capable of ω-hydroxylating geraniol although the activity was lower than that observed with lungs.
Resumo:
Adriamycin (Doxorubicin) stimulates NADH oxidase activity in liver plasma membrane, but does not cause NADH oxidase activity to appear where it is not initially present, as in erythrocyte membrane. NADH dehydrogenase from rat liver and erythrocyte plasma membranes shows similar adriamycin effects with other electron acceptors. Both NADH ferricyanide reductase and vanadate-stimulated NADH oxidation are inhibited by adriamycin, as is a cyanide insensitive ascorbate oxidase activity, whereas NADH cytochrome c reductase is not affected. The effects may contribute to the growth inhibitory (control) and/or deleterious effects of adriamycin. It is clear that adriamycin effects on the plasma membrane dehydrogenase involve more than a simple catalysis of superoxide formation.
Resumo:
Cibacron Blue 3G-A inhibited monkey liver serine hydroxymethyltransferase competitively with respect to tetrahydrofolate and non-competitively with respect to L-serine. NADH, a positive heterotropic effector, failed to protect the enzymes against inhibition by the dye and was unable to desorb the enzyme from Blue Sepharose CL-6B gel matrix. The binding of the dye to the free enzyme was confirmed by changes in the dye absorption spectrum. The results indicate that the dye probably binds at the tetrahydrofolate-binding domain of the enzyme, rather than at the 'dinucleotide fold'.
Resumo:
1. Metabolites isolated from the urine of rats after oral administration of geraniol (I) were: geranic acid (II), 3-hydroxy-citronellic acid (III), 8-hydroxy-geraniol (IV), 8-carboxy-geraniol (V) and Hildebrandt acid (VI). 2. Metabolites isolated from urine of rats after oral administration of linalool (VII) were 8-hydroxy-linalool (VIII) and 8-carboxy-linalool (IX). 3. After three days of feeding rats with either geraniol or linalool, liver-microsomal cytochrome P-450 was increased. Both NADH- and NADPH-cytochrome c reductase activities were not significantly changed during the six days of treatment. 4. Oral administration of these two terpenoids did not affect any of the lung-microsomal parameters measured.
Resumo:
We examine the structure and phylogeography of the pig-eye shark (Carcharhinus amboinensis) common in shallow coastal environments in northern Australia using two types of genetic markers, two mitochondrial (control region and NADH hydrogenase 4) and two nuclear (microsatellite and Rag 1) DNA. Two populations were defined within northern Australia on the basis of mitochondrial DNA evidence, but this result was not supported by nuclear microsatellite or Rag 1 markers. One possibility for this structure might be sex-specific behaviours such as female philopatry, although we argue it is doubtful that sufficient time has elapsed for any potential signatures from this behaviour to be expressed in nuclear markers. It is more likely that the observed pattern represents ancient populations repeatedly isolated and connected during episodic sea level changes during the Pleistocene epoch, until current day with restricted contemporary gene flow maintaining population genetic structure. Our results show the need for an understanding of both the history and ecology of a species in order to interpret patterns in genetic structure.
Resumo:
Reproductive philopatry in bull sharks Carcharhinus leucas was investigated by comparing mitochondrial (NADH dehydrogenase subunit 4, 797 base pairs and control region genes 837 base pairs) and nuclear (three microsatellite loci) DNA of juveniles sampled from 13 river systems across northern Australia. High mitochondrial and low microsatellite genetic diversity among juveniles sampled from different rivers (mitochondrial fST = 0.0767, P < 0.05; microsatellite FST = -0.0022, P > 0.05) supported female reproductive philopatry. Genetic structure was not further influenced by geographic distance (P > 0.05) or long-shore barriers to movement (P > 0.05). Additionally, results suggest that C. leucas in northern Australia has a long-term effective population size of 11 000-13 000 females and has undergone population bottlenecks and expansions that coincide with the timing of the last ice-ages.
Resumo:
Background:Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. Methods and Findings:Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and FST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717–0.03508, p values ≤ 0.0013; pairwise FST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia’s east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04).Conclusions: The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.
Resumo:
1. a-p-Chlorophenoxyisobutyric acid, the ethyl ester of which is widely used as an antihypercholesterolaemic drug, is an inhibitor of energy-transfer reactions in isolated rat liver mitochondria. 2. The compound at lower concentrations (<4.0mmol/mg of mitochondrial protein) inhibits state 3 oxidation, stimulates state 4 oxidation, abolishes respiratory control and stimulates the latent adenosine triphosphatase activity of mitochondria. The inhibition imposed on state 3 oxidation is relieved by dinitrophenol. 3. At higher concentrations it inhibits coupled phosphorylation as well as dinitrophenol-stimulated adenosine triphosphatase activity. The inhibition of state 3 oxidation under these conditions is not reversed by uncouplers. 4. The three coupling sites of phosphorylation exhibit differential susceptibility to inactivation by this compound. Coupled phosphorylation at the first site is abolished at a drug concentration of 3.0mmol/mg of protein. The third site is inactivated when the concentration of the drug reaches 5.0mmol/mg of protein. The second site is the most refractory and drug concentrations of the order of 10.0mmol/mg of protein are required effectively to inhibit phosphorylation at this site. 5. The compound also inhibits ATP-dependent reversal of electron transport as well as the adenosine triphosphatase activity in submitochondrial particles. 6. The oxidation of NADH and succinate in these particles is not inhibited. 7. These properties indicate that the compound acts as an `inhibitory uncoupler' of energy-transfer reactions in isolated mitochondria.
Resumo:
Serine hydroxymethyltransferase, the first enzyme in the pathway for interconversion of C1 fragments, was purified to homogeneity for the first time from any plant source. The enzyme from 72-h mung bean (Vigna radiata L.) seedlings was isolated using Blue Sepharose CL-6B and folate-AH-Sepharose-4B affinity matrices and had the highest specific activity (1.33 micromoles of HCHO formed per minute per milligram protein) reported hitherto. The enzyme preparation was extremely stable in the presence of folate or L-serine. Pyridoxal 5'-phosphate, ethylenediaminetetraacetate and 2-mercaptoethanol prevented the inactivation of the enzyme during purification. The enzyme functioned optimally at pH 8.5 and had two temperature maxima at 35 and 55°C. The Km values for serine were 1.25 and 68 millimolar, corresponding to Vmax values of 1.8 and 5.4 micromoles of HCHO formed per minute per milligram protein, respectively. The K0.5 value for L-tetrahydrofolate (H4folate) was 0.98 millimolar. Glycine, the product of the reaction and D-cycloserine, a structural analog of D-alanine, were linear competitive inhibitors with respect to L-serine with Ki values of 2.30 and 2.02 millimolar, respectively. Dichloromethotrexate, a substrate analog of H4folate was a competitive inhibitor when H4folate was the varied substrate. Results presented in this paper suggested that pyridoxal 5'-phosphate may not be essential for catalysis.The sigmoid saturation pattern of H4folate (nH = 2.0), one of the substrates, the abolition of sigmoidicity by NADH, an allosteric positive effector (nH = 1.0) and the increase in sigmoidicity by NAD+ and adenine nucleotides, negative allosteric effectors (nH = 2.4) clearly established that this key enzyme in the folate metabolism was an allosteric protein. Further support for this conclusion were the observations that (a) serine saturation exhibited an intermediary plateau region; (b) partial inhibition by methotrexate, aminopterin, O-phosphoserine, DL-{alpha}-methylserine and DL-O-methylserine; (c) subunit nature of the enzyme; and (d) decrease in the nH value from 2.0 for H4folate to 1.5 in presence of L-serine. These results highlight the regulatory nature of mung bean serine hydroxymethyltransferase and its possible involvement in the modulation of the interconversion of folate coenzymes.
Resumo:
Benzoate-4-hydroxylase from a soil pseudomonad was isolated and purified about 50-fold. Polyacrylamide gel electrophoresis of this enzyme preparation showed one major band and one minor band. The approximate molecular weight of the enzyme was found to be 120,000. Benzoate-4-hydroxylase was most active around pH 7.2. The enzyme showed requirements for tetrahydropteridine as the cofactor and molecular oxygen as the electron acceptor. NADPH, NADH, dithiothreitol, β-mercaptoethanol, and ascorbic acid when added alone to the reaction mixture did not support the hydroxylation reaction to any significant extent. However, when these compounds were added together with tetrahydropteridine, they stimulated the hydroxylation. This stimulation is probably due to the reduction of the oxidized pteridine back to the reduced form. This enzyme was activated by Fe2+ and benzoate. It was observed that benzoate-4-hydroxylase could catalyze the oxidation of NADPH in the presence of benzoate,p-aminobenzoate, p-nitrobenzoate, p-chlorobenzoate, and p-methylbenzoate, with only benzoate showing maximum hydroxylation. Inhibition studies with substrate analogs and their kinetic analysis revealed that the carboxyl group is involved in binding the substrate to the enzyme at the active center. The enzyme catalyzed the conversion of 1 mol of benzoate to 1 mol of p-hydroxybenzoate with the consumption of slightly more than 1 mol of NADPH and oxygen.
Resumo:
The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.