258 resultados para N2O
Resumo:
Dissertação para a obtenção do Grau de Mestre em Energia e Bioenergia
Resumo:
Protein Sci. 2009 Mar;18(3):619-28. doi: 10.1002/pro.69.
Resumo:
use of additives (Mg/P and nitrification inhibitor dicyandiamide - DCD), on nitrous oxide emission during swine slurry composting. The experiment was run in duplicate; the gas was monitored for 30 days in different treatments (control, DCD, Mg/P and DCD + Mg/P). Nitrous oxide emissions rate (mg of N2O-N.day-1) and the accumulated emissions were calculated to compare the treatments. Results has shown that emissions of N-N2O were reduced by approximately 70, 46 and 96% through the additions of DCD, MgCl2.6H2O + H3PO4 and both additives, respectively, compared to the control. Keywords Composting; swine slurry; additives; nitrous
Resumo:
Field measurement programs in Brazil during the dry season months of August and September in 1979 and 1980 have demonstrated the great importance of the continental tropics in global air chemistry. Especially in the mixed layer, the air composition over land is much different from that over the ocean and the land areas are clearly longe scale sources of many inportant trace gases. During the dry season much biomass, burning takes place especially in the cerrado regions leading to substantial emission of air pollutants, such as CO, NOx, N2O, CH4 and other hydrocarbons. Ozone concentrations are alsoenhanced due to photochemical reactions. Biogenic organic emissions from tropical forests play likewise an important role in the photochemistry of the atmosphere. Carbon monoxide was found to be present in high concentrations in the boundary layer of the tropical forest, but ozone concentrations were much lower than in the cerrado.
Resumo:
Com base na nova economia institucional, o foco da pesquisa aqui relatada foi identificar os custos de transação existentes nos projetos de Mecanismo de Desenvolvimento Limpo (MDL) e investigar se eles são barreiras para o desenvolvimento do projeto e se podem afetar a eficiência de projetos já implantados. Mais especificamente, foram analisadas as variáveis que afetam as diferenças entre as reduções de emissões estimadas nos projetos de MDL e as reduções realmente verificadas (sucesso de redução - SR), depois do projeto implantado e monitorado, verificando se os projetos agrícolas são mais ou menos eficientes. Em relação ao SR, a maior parte dos projetos não apresenta desempenho satisfatório. No entanto, em volume de reduções, a maior parte dos projetos cumpre mais do que 91% de SR. Os setores mundiais mais eficientes no Brasil são N2O e troca de energia fóssil; os menos eficientes, os setores de agricultura e resíduos sólidos. Finalmente, concluiu-se na pesquisa que os custos de transação afetam o sucesso da redução de MDL, e os mais importantes são os custos ex ante, resultantes de problemas de falhas de informação e problemas de mensuração.
Resumo:
Os manejos conservacionistas, como o sistema plantio direto (SPD), podem ser considerados uma atividade com potencial para sequestrar C no solo. Os objetivos deste trabalho foram quantificar os estoques de C no solo e, juntamente com a dedução das emissões de óxido nitroso (N2O), calcular o sequestro de C do solo sob SPD com diferentes tempos de implantação em duas sucessões de culturas. O experimento foi instalado na Fazenda Santa Branca, em Tibagi (PR), em um Latossolo Vermelho distroférrico de textura argilosa. Os tratamentos, dispostos em faixas não casualizadas com parcelas subdivididas, foram: plantio direto por 12 anos com sucessões milho/trigo e soja/trigo (PD12 M/T e PD12 S/T, respectivamente) e por 22 anos (PD22 M/T e PD22 S/T, respectivamente). Os estoques de C no solo aumentaram com o tempo de implantação do SPD; o incremento no C do solo em 10 anos foi de 35 %, com uma taxa anual de acúmulo de 1,94 t ha-1 ano-1 . A simulação do estoque de C do solo com o uso do modelo unicompartimental mostrou que o elevado aporte de resíduos culturais e a rotação de culturas com uso de leguminosas reduziram a mineralização da matéria orgânica, o que favoreceu o acúmulo de C no solo. As emissões de N2O foram 25 % mais elevadas na sucessão milho/trigo, em relação à soja/trigo, e os diferentes tempos de SPD não promoveram aumento das emissões do N2O. O balanço entre a taxa de acúmulo de C e a emissão de óxido nitroso mostrou que o sistema apresentou saldo positivo no acúmulo de C no solo, o que significou o sequestro de CO2 de 6 t ha-1 ano-1 .
Resumo:
[spa] En este artículo aplicamos un modelo input-output ampliado medioambientalmente para analizar un aspecto específico de la hipótesis de la curva de Kuznets ambiental. El propósito del estudio es analizar si las estructuras de consumo de los hogares con una mejor ‘posición económica’ pueden tener un efecto positivo para reducir las presiones medioambientales. Para ello combinamos información de diferentes bases de datos para analizar el impacto de la contaminación atmosférica del consumo de diferentes hogares españoles en el año 2000. Consideramos nueve gases, i.e. los seis gases de efecto invernadero (CO2, CH4, N2O, SF6, HFCs, y PFCs) y otros tres gases (SO2, NOx, y NH3). Clasificamos los hogares en quintiles de gasto per capita y quintiles de gasto equivalente. Los resultados obtenidos muestran que hay una relación positiva y elevada entre el nivel de gasto y las emisiones directas e indirectas generadas por el consumo de los hogares; sin embargo, las intensidades de emisión tienden a disminuir con el nivel de gasto para los diferentes gases, con la excepción de SF6, HFCs, y PFCs.
Resumo:
Nitrous oxide (N2O) is the most important non-CO2 greenhouse gas and soil management systems should be evaluated for their N2O mitigation potential. This research evaluated a long-term (22 years) experiment testing the effect of soil management systems on N2O emissions in the postharvest period (autumn) from a subtropical Rhodic Hapludox at the research center FUNDACEP, in Cruz Alta, state of Rio Grande do Sul. Three treatments were evaluated, one under conventional tillage with soybean residues (CTsoybean) and two under no-tillage with soybean (NTsoybean) and maize residues (NTmaize). N2O emissions were measured eight times within 24 days (May 2007) using closed static chambers. Gas flows were obtained based on the relations between gas concentrations in the chamber at regular intervals (0, 15, 30, 45 min) analyzed by gas chromatography. After soybean harvest, accumulated N2O emissions in the period were approximately three times higher in the untilled soil (164 mg m-2 N) than under CT (51 mg m-2 N), with a short-lived N2O peak of 670 mg m-2 h-1 N. In contrast, soil N2O emissions in NT were lower after maize than after soybean, with a N2O peak of 127 g m-2 h-1 N. The multivariate analysis of N2O fluxes and soil variables, which were determined simultaneously with air sampling, demonstrated that the main driving variables of soil N2O emissions were soil microbial activity, temperature, water-filled pore space, and NO3- content. To replace soybean monoculture, crop rotation including maize must be considered as a strategy to decrease soil N2O emissions from NT soils in Southern Brazil in a Autumn.
Resumo:
The semi-arid region of Chiapas is dominated by N2 -fixing shrubs, e.g., Acacia angustissima. Urea-fertilized soil samples under maize were collected from areas covered and uncovered by A. angustissima in different seasons and N2O and CO2 emissions were monitored. The objective of this study was to determine the effects of urea and of the rainy and dry season on gas emissions from semi-arid soil under laboratory conditions. Urea and soil use had no effect on CO2 production. Nitrons oxide emission from soil was three times higher in the dry than in the rainy season, while urea fertilization doubled emissions. Emissions were twice as high from soil sampled under A. angustissima canopy than from arable land, but 1.2 lower than from soil sampled outside the canopy, and five times higher from soil incubated at 40 % of the water-holding capacity (WHC) than at soil moisture content, but 15 times lower than from soil incubated at 100 WHC. It was found that the soil sampling time and water content had a significant effect on N2O emissions, while N fertilizer and sampling location were less influent.
Resumo:
Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.
Resumo:
A conversão de áreas nativas com o corte e queima de vegetação seguida do cultivo do solo resultam em mudanças na dinâmica da matéria orgânica do solo, com alterações nas emissões dos gases causadores de efeito estufa (GEE: CO2, CH4 e N2O) da biosfera para a atmosfera, que causam a elevação da temperatura média e, consequentemente, as mudanças climáticas globais. O objetivo deste estudo foi verificar as relações entre os fluxos de CO2, CH4 e N2O com a umidade, biomassa microbiana e as formas inorgânicas de N no solo com diferentes usos das terras no bioma Cerrado (Rio Verde, Goiás). O clima da região é do tipo Aw (Köppen-Geiger), e o solo foi classificado como Latossolo Vermelho distrófico caulinítico textura argilosa com vegetação original de Cerradão. O delineamento experimental foi inteiramente casualizado (DIC), com quatro tratamentos (áreas): vegetação nativa - Cerradão (CE); pastagem (PA) de braquiária, semeadura convencional (SC) de soja; e semeadura direta (SD) de milho sucedido por milheto. As emissões anuais de CO2 e N2O não mostraram diferenças significativas entre os tratamentos; isso ocorreu devido à elevada variação nos fluxos dos gases em decorrência da sazonalidade no clima, com as menores emissões observadas durante o inverno, devido à ausência da umidade do solo. A média na emissão de CO2 foi de 108,9 ± 85,6 mg m-2 h-1 , e para o N2O, de 13,5 ± 7,6 µg m-2 h-1. Os fluxos de CH4 apresentaram diferenças significativas somente para a pastagem, com emissão de 32 µg m-2 h-1 , enquanto nas demais áreas foram observados influxos entre 46 e 15 µg m-2 h-1 . Com os resultados das correlações, pode-se verificar que a umidade foi a variável do solo que apresentou maior correlação com o fluxo dos três gases de efeito estufa. O teor de N-NO3- e as emissões de CO2 mostraram correlações para todas as áreas. Quando consideradas as correlações para todos os tratamentos conjuntamente, verificou-se que os fluxos dos três gases apresentaram correlações significativas com os teores de C e N-microbiano. Contudo, a relação Cmicro:Nmicro não mostrou correlação significativa com o fluxo dos gases de efeito estufa. A pastagem foi a única situação em que os fluxos de CO2 e N2O apresentaram correlação com as quantidades de N-inorgânico. Os resultados sugerem que os fluxos dos GEE são dependentes do regime pluvial no bioma Cerrado, principalmente nas áreas cultivadas que recebem altas doses de fertilizantes para o aumento da produtividade.
Resumo:
Winter cover crops are sources of C and N in flooded rice production systems, but very little is known about the effect of crop residue management and quality on soil methane (CH4) and nitrous oxide (N2O) emissions. This study was conducted in pots in a greenhouse to evaluate the influence of crop residue management (incorporated into the soil or left on the soil surface) and the type of cover-crop residues (ryegrass and serradella) on CH4 and N2O emissions from a flooded Albaqualf soil cultivated with rice (Oryza sativa L.). The closed chamber technique was used for air sampling and the CH4 and N2O concentrations were analyzed by gas chromatography. Soil solution was sampled at two soil depths (2 and 20 cm), simultaneously to air sampling, and the contents of dissolved organic C (DOC), NO3-, NH4+, Mn2+, and Fe2+ were analyzed. Methane and N2O emissions from the soil where crop residues had been left on the surface were lower than from soil with incorporated residues. The type of crop residue had no effect on the CH4 emissions, while higher N2O emissions were observed from serradella (leguminous) than from ryegrass, but only when the residues were left on the soil surface. The more intense soil reduction verified in the deeper soil layer (20 cm), as evidenced by higher contents of reduced metal species (Mn2+ and Fe2+), and the close relationship between CH4 emission and the DOC contents in the deeper layer indicated that the sub-surface layer was the main CH4 source of the flooded soil with incorporated crop residues. The adoption of management strategies in which crop residues are left on the soil surface is crucial to minimize soil CH4 and N2O emissions from irrigated rice fields. In these production systems, CH4 accounts for more than 90 % of the partial global warming potential (CH4+N2O) and, thus, should be the main focus of research.
Resumo:
Nitrification can lead to substantial losses of the applied N through nitrate leaching and N2O emission. The regulation of nitrification may be a strategy to improve fertilizer N recovery and increase its agronomic efficiency. The objective of this study was to evaluate the inhibiting capacity of nitrification in soil by Brachiaria species. The greenhouse experiment was conducted using pots with 10 dm³ of a Red Latosol sample. The treatments consisted of the cultivation of three forage species (Brachiaria brizantha, B. ruziziensis and B. decumbens) and four n rates (0, 100, 200, and 300 mg/pot), and the control (without plants). In the absence of the forage plants, all N fertilization levels raised the N-NO3- soil levels, as a result of nitrification. The mineralization of organic matter supplied much of the N requirement of the forage plants and nitrification was influenced in the rhizosphere of B. brizantha; however, this effect was not high enough to alter the N-NH4+ level in the total soil volume of the pot.
Resumo:
Among the greenhouse gases, nitrous oxide (N2O) is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2) and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N) and rice straw levels (0, 5 and 10 Mg ha-1), i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF), significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.
Resumo:
ABSTRACT Livestock urine and dung are important components of the N cycle in pastures, but little information on its effect on soil nitrous oxide (N2O) emissions is available. We conducted a short-term (39-day) trial to quantify the direct N2O-N emissions from sheep excreta on an experimental area of ryegrass pasture growing on a Typic Paleudult in southern Brazil. Four rates of urine-N (161, 242, 323, and 403 kg ha-1 N) and one of dung-N (13 kg ha-1 N) were applied, as well as a control plot receiving no excreta. The N2O-N emission factor (EF = % of added N released as N2O-N) for urine and dung was calculated, taking into account the N2O fluxes in the field, over a period of 39 days. The EF value of the urine and dung was used to estimate the emissions of N2O-N over a 90-day period of pasture in the winter under two grazing intensities (2.5 or 5.0 times the herbage intake potential of grazing lambs). The soil N2O-N fluxes ranged from 4 to 353 µg m-2h-1. The highest N2O-N fluxes occurred 16 days after application of urine and dung, when the highest soil nitrate content was also recorded and the water-filled pore space exceeded 60 %. The mean EF for urine was 0.25 % of applied N, much higher than that for dung (0.06 %). We found that N2O-N emissions for the 90-day winter pasture period were 0.54 kg ha-1 for low grazing intensity and 0.62 kg ha-1 for moderate grazing intensity. Comparison of the two forms of excreta show that urine was the main contributor to N2O-N emissions (mean of 36 %), whereas dung was responsible for less than 0.1 % of total soil N2O-N emissions.