952 resultados para Myocytes, Smooth Muscle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural homologues of vertebrate regulatory peptides found in defensive skin secretions of anuran amphibians often display enhanced bioactivity and receptor binding when compared with endogenous mammalian peptide ligands. Maximakinin, a novel N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the skin venom of a Chinese toad (Bombina maxima), displays such activity enhancement when compared with bradykinin but is additionally highly selective for mammalian arterial smooth muscle bradykinin receptors displaying a 50-fold increase in molar potency in this smooth muscle type. In contrast, a 100-fold decrease in molar potency was observed at bradykinin receptors in intestinal and uterine smooth muscle preparations. Maximakinin has thus evolved as a “smart” defensive weapon in the toad with receptor/tissue selective targeting. Natural selection of amphibian skin venom peptides for antipredator defence, through inter-species delivery by an exogenous secretory mode, produces subtle structural stabilisation modifications that can potentially provide new insights for the design of selectively targeted peptide therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To identify interstitial cells (ICs) in the wall of the rabbit urethra using antibodies to the Kit receptor, and to examine their location, morphology and relationship with nerves and smooth muscle cells (SMCs), as studies of enzymatically isolated cells from the rabbit urethra have established that there are specialized cells that show spontaneous electrical activity and have morphological properties of ICs. MATERIALS AND METHODS: Urethral tissues from rabbits were fixed, labelled with antibodies and examined with confocal microscopy. Some specimens were embedded in paraffin wax and processed for histology. Histological sections from the most proximal third and mid-third region of rabbit urethra were stained with Masson's Trichrome to show their cellular arrangement. RESULTS: Sections from both regions had outer longitudinal and inner circular layers of SM, and a lamina propria containing connective tissue and blood vessels; the lumen was lined with urothelial cells. The mid-third region had a more developed circular SM layer than the most-proximal samples, and had extensive inner longitudinal SM bundles in the lamina propria. Labelling with anti-Kit revealed immunopositive cells within the wall of the rabbit urethra, in the circular and longitudinal layers of the muscularis. Double-labelling with an antibody to SM myosin showed Kit-positive cells on the boundary of the SM bundles, orientated parallel to the axis of the bundles. Others were in spaces between the bundles and often made contact with each other. Kit-positive cells were either elongated, with several lateral branches, or stellate with branches coming from a central soma. Similar cells could be labelled with vimentin antibodies. Their relationship with intramural nerves was examined by double immunostaining with an anti-neurofilament antibody. There were frequent points of contact between Kit-positive cells and nerves, with similar findings in specimens double-immunostained with anti-neuronal nitric oxide synthase (nNOS). CONCLUSION: Kit-positive ICs were found within the SM layers of the rabbit urethra, in association with nerves, on the edge of SM bundles and in the interbundle spaces. The contact with nNOS-containing neurones might imply participation in the nitrergic inhibitory neurotransmission of the urethra. PMID: 17212607 [PubMed - indexed for MEDLINE]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control of ocular blood flow occurs predominantly at the level of the retinal and choroidal arterioles. The present article provides an overview of the Ca2 + handling mechanisms and plasmalemmal ion channels involved in the regulation of retinal and choroidal arteriolar smooth muscle tone. Increases in global intracellular free Ca2 + ([Ca2 +]i) involve multiple mechanisms, including agonist-dependent release of Ca2 + from intracellular stores through activation of the inositol trisphosphate (IP3) pathway. Ca2 + enters by voltage-dependent L-type Ca2 + channels and novel dihydropyridine-sensitive store-operated nonselective cation channels. Ca2 + extrusion is mediated by plasmalemmal Ca2 +-ATPases and through Na+/Ca2+ exchange. Local Ca2 + transients (Ca2 + sparks) play an important excitatory role, acting as the building blocks for more global Ca2 + signals that can initiate vasoconstriction. K+ and Cl- channels may also affect cell function by modulating membrane potential. The precise contribution of each of these mechanisms to the regulation of retinal and choroidal perfusion in vivo warrants future investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bradykinin-related peptides (BRPs) represent one of the most widespread and closely studied families of amphibian defensive skin secretion peptides. Apart from canonical bradykinin (RPPGFSPFR) that was first reported in skin extracts of the European brown frog, Rana temporaria, many additional site-substituted, N- and/or C-terminally extended peptides have been isolated from skin extracts and secretions from representative species of the families Ranidae, Hylidae, Bombinatoridae and Leiopelmatidae. The most diverse range of BRPs has been found in ranid frog skin secretions and this probably reflects the diversity and number of species studied and their associated life histories within this taxon. Amolops (torrent or cascade frogs) is a genus within the Ranidae that has been poorly studied. Here we report the presence of two novel BRPs in the skin secretions of the Chinese Wuyi Mountain torrent frog (Amolops wuyiensis). Amolopkinins W1 and W2 are dodecapeptides differing in only one amino acid residue at position 2 (Val/Ala) that are essentially (Leu1, Thr6)-bradykinins extended at the N-terminus by either RVAL (W1) or RAAL (W2). Amolopkinins W1 and W2 are structurally similar to amolopkinin L1 from Amolops loloensis and the major BRP (Leu1, Thr6, Trp8)-bradykinin from the skin of the Japanese frog, Rana sakuraii. A. wuyiensis amolopkinins were separately encoded as single copies within discrete precursors of 61 amino acid residues as deduced from cloned skin cDNA. Synthetic replicates of both peptides were found to potently antagonize the contractile effects of canonical bradykinin on isolated rat ileum smooth muscle preparations. Amolopkinins thus appear to represent a novel sub-family of ranid frog skin secretion BRPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tachykinins are among the most widely-studied families of regulatory peptides characterized by a highly-conserved C-terminal -Phe-X-Gly-Leu-Met.amide motif, which also constitutes the essential bioactive core. The amphibian skin has proved to be a rich source of these peptides with physalaemin from the skin of Physalaemus fuscomaculatus representing the archetypal aromatic tachykinin (X = Tyr or Phe) and kassinin from the skin of Kassina senegalensis representing the archetypal aliphatic tachykinin in which X = Val or Ile. Despite the primary structures of both mature peptides having been known for at least 30 years, neither the structures nor organizations of their biosynthetic precursors have been reported. Here we report the structure and organization of the biosynthetic precursor of kassinin deduced from cDNA cloned from a skin secretion library. In addition, a second precursor cDNA encoding the novel kassinin analog (Thr2, Ile9)-kassinin was identified as was the predicted mature peptide in skin secretion. Both transcripts exhibited a high degree of nucleotide sequence similarity and of open-reading frame translated amino acid sequences of putative precursor proteins. The translated preprotachykinins each consisted of 80 amino acid residues encoding single copies of either kassinin or its site-substituted analog. Synthetic replicates of each kassinin were found to be active on rat urinary bladder smooth muscle at nanomolar concentrations. The structural organization of both preprotachykinins differs from that previously reported for those of Odorrana grahami skin indicating a spectrum of diversity akin to that established for amphibian skin preprobradykinins.