122 resultados para Myoblasts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

FGFRL1 is a recently discovered member of the fibroblast growth factor receptor family that is lacking the intracellular tyrosine kinase domain. To elucidate the function of the novel receptor, we created mice with a targeted disruption of the Fgfrl1 gene. These mice develop normally until term, but die within a few minutes after birth due to respiratory failure. The respiratory problems are explained by a significant reduction in the size of the diaphragm muscle, which is not sufficient to inflate the lungs after birth. The remaining portion of the diaphragm muscle appears to be well developed and innervated. It consists of differentiated myofibers with nuclei at the periphery. Fast and slow muscle fibers occur in normal proportions. The myogenic regulatory factors MyoD, Myf5, myogenin and Mrf4 and the myocyte enhancer factors Mef2A, Mef2B, Mef2C and Mef2D are expressed at normal levels. Experiments with a cell culture model involving C2C12 myoblasts show that Fgfrl1 is expressed during the late stages of myotube formation. Other skeletal muscles do not appear to be affected in the Fgfrl1 deficient mice. Thus, Fgfrl1 plays a critical role in the development of the diaphragm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering represents an attractive approach for the treatment of congestive heart failure. The influence of the differentiation of myogenic graft for functional recovery is not defined. We engineered a biodegradable skeletal muscle graft (ESMG) tissue and investigated its functional effect after implantation on the epicardium of an infarcted heart segment. ESMGs were synthesized by mixing collagen (2 mg/mL), Matrigel (2 mg/mL), and rat skeletal muscle cells (10(6)). Qualitative and quantitative aspects of ESMGs were optimized. Two weeks following coronary ligation, the animals were randomized in three groups: ESMG glued to the epicardial surface with fibrin (ESMG, n = 7), fibrin alone (fibrin, n = 5), or sham operation (sham, n = 4). Echocardiography, histology, and immunostaining were performed 4 weeks later. A cohesive three-dimensional tissular structure formed in vitro within 1 week. Myoblasts differentiated into randomly oriented myotubes. Four weeks postimplantation, ESMGs were vascularized and invaded by granulation tissue. Mean fractional shortening (FS) was, however, significantly increased in the ESMG group as compared with preimplantation values (42 +/- 6 vs. 33 +/- 5%, P < 0.05) and reached the values of controlled noninfarcted animals (control, n = 5; 45 +/- 3%; not significant). Pre- and postimplantation FS did not change over these 4 weeks in the sham group and the fibrin-treated animals. This study showed that it is possible to improve systolic heart function following myocardial infarction through implantation of differentiated muscle fibers seeded on a gel-type scaffold despite a low rate of survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The four basic helix-loop-helix myogenic transcription factors, myogenin, Myf5, MRF4, and MyoD are critical for embryonic skeletal muscle development. Myogenin is necessary for the terminal differentiation of myoblasts into myofibers during embryogenesis, but little is known about the roles played by myogenin in adult skeletal muscle function and metabolism. Furthermore, while metabolism is a well-studied physiological process, how it is regulated at the transcriptional level remains poorly understood. In this study, my aim was to determine the function of myogenin in adult skeletal muscle metabolism, exercise capacity, and regeneration. To investigate this, I utilized a mouse strain harboring the Myogflox allele and a Cre recombinase transgene, enabling the efficient deletion of myogenin in the adult mouse. Myogflox/flox mice were stressed physically through involuntary treadmill running and by breeding them with a strain harboring the Duchenne’s muscular dystrophy (DMDmdx) allele. Surprisingly, Myog-deleted animals exhibited an enhanced capacity for exercise, running farther and faster than their wild-type counterparts. Increased lactate production and utilization of glucose as a fuel source indicated that Myog-deleted animals exhibited an increased glycolytic flux. Hypoglycemic Myog-deleted mice no longer possessed the ability to outrun their wild-type counterparts, implying the ability of these animals to further deplete their glucose reserves confers their enhanced exercise capacity. Moreover, Myog-deleted mice exhibited an enhanced response to long-term exercise training. The mice developed a greater proportion of type 1 oxidative muscle fibers, and displayed increased levels of succinate dehydrogenase activity, indicative of increased oxidative metabolism. Mdx:Myog-deleted mice exhibited a similar phenotype, outperforming their mdx counterparts, although lagging behind wild-type animals. The morphology of muscle tissue from mdx:Myog-deleted mice appears to mimic that of mdx animals, indicating that myogenin is dispensable for adult skeletal muscle regeneration. Through global gene expression profiling and quantitative (q)RT-PCR, I identified a unique set of putative myogenin-dependent genes involved in regulating metabolic processes. These data suggest myogenin’s functions during adulthood are distinctly different than those during embryogenesis, and myogenin acts as a high-level transcription factor regulating metabolic activity in adult skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle differentiation involves sequential events in which proliferating undifferentiated myoblasts withdraw from the cell cycle and fuse to form multinucleated myotubes. The process of fusion is accompanied by the disappearance of proteins associated with cell proliferation and the coordinate induction of a battery of muscle-specific gene products, which includes the muscle isoenzyme of creatine kinase, nicotinic acetylcholine receptor, and contractile proteins such as alpha-actin. The molecular events associated with myogenesis are particularly amenable to experimental analysis because the events which occur in vivo can be recapitulated in vitro using established muscle cell lines. Initiation of myogenic differentiation in vitro can be achieved by removing serum from the culture medium. Myogenesis, therefore, can be considered to be regulated through a repression-type of mechanism by components in serum. The objectives of this project were to identify the components involved in regulation of myogenesis and approach the mechanism(s) whereby these components achieve their regulatory function. Initially, the effects of a series of polypeptide growth factors on myogenesis were examined. Among them TGF$\beta$ and FGF were found to be potent inhibitors of myogenic differentiation which did not affect cell proliferation. The inhibitory effects of these growth factors on differentiation requires their persistent presence in the culture medium. After myoblasts have undergone fusion, they become refractory to the inhibitory effects of TGF$\beta$, FGF, and serum. When fusion is inhibited by the presence of EGTA, a Ca$\sp{2+}$ chelator, muscle-specific genes are expressed reversibly upon removal of inhibitory growth factors. Subsequent exposure of biochemically differentiated cells to serum or TGF$\beta$ leads to down-regulation of muscle-specific genes. Stimulation with serum also leads to reentry of myocytes into the cell cycle, whereas fused myotubes are irreversibly and terminally differentiated. Measurement of levels of TGF$\beta$ receptors reveals that under non-fusing conditions, TGF$\beta$ receptor levels in biochemically differentiated myocytes remained as high as in undifferentiated myoblasts, while during terminal differentiation, TGF$\beta$ receptors decreased at least five-fold. Thus, down-regulation of TGF$\beta$ receptors is coupled to irreversible differentiation, but not reversible differentiation in the absence of fusion. The possible involvement of second messenger systems, such as cAMP and protein kinase C, in the pathway(s) by which TGF$\beta$, FGF, or serum factors transduce their signals from the cell surface to the nucleus was also examined. The results showed that myogenic differentiation is subject to negative regulation through cAMP elevation-dependent and cAMP elevation-independent pathways and that serum mitogens, TGF$\beta$ and FGF inhibit differentiation through a mechanism independent of cAMP-elevation or protein kinase C activation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of skeletal muscle during vertebrate development involves the induction of mesoderm and subsequent generation of myoblasts that ultimately differentiate into mature muscles. The recent identification of a group of myogenic regulators that can convert fibroblasts to myoblasts has contributed to our understanding of the molecular events that underlie the establishment of the skeletal muscle phenotype. Members of this group of myogenic regulators share a helix-loop-helix (HLH) motif that mediates DNA binding. The myogenic HLH proteins bind to the consensus sequence CANNTG, referred to as an E-box, and activate muscle-specific transcription. In addition to E-boxes, other motifs, such as the MEF-2 binding site, have been shown to mediate muscle-specific transcription. The myogenic HLH proteins are expressed in the myogenic precursors in somites and limb buds, and in differentiated muscle fibers during embryogenesis, consistent with their roles as regulators for muscle development. The myogenic HLH proteins appear to auto-activate their own and cross-activate one another's expression in cultured cells. Myogenin is one of the myogenic HLH proteins and likely the regulator for terminal muscle differentiation. Myogenin is a common target of diverse regulatory pathways. To search for upstream regulators of myogenin, we studied regulation of myogenin transcription during mouse embryogenesis. We showed that the myogenin promoter contains a binding site for MEF-2, which can mediate indirectly the autoregulation of myogenin transcription. We found that a transgene under the control of a 1.5 kb 5$\sp\prime$ flanking sequence can recapitulate the temporal and spatial expression pattern of the endogenous myogenin gene during mouse embryogenesis. By tracing embryonic cells that activate myogenin-lacZ during embryogenesis, we found no evidence that lacZ was expressed in myogenic precursors migrating from somites to limb buds, suggesting the existence of regulators other than myogenic HLH proteins that can maintain cells in the myogenic lineage. Mutations of an E-box and a MEF-2 site in the myogenin promoter suppressed transcription in subsets of myogenic precursors in mouse embryos. These results suggest that myogenic HLH proteins and MEF-2 participate in separable regulatory pathways controlling myogenin transcription and provide evidence for positional regulation of myogenic regulators in the embryo. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expression of the differentiated skeletal muscle phenotype is a process that appears to occur in at least two stages. First, pluripotent stem cells become committed to the myogenic lineage. Although undifferentiated and capable of continued proliferation, determined myoblasts are restricted to a single developmental fate. Upon receiving the appropriate environmental signals, these determined myoblasts withdraw from the cell cycle, fuse to form multi-nucleated myotubes, and begin to express a battery of muscle-specific gene products that make up the functional and contractile apparatus of the muscle. This project is aimed at the identification and characterization of factors that control the determination and differentiation of myogenic cells. We have cloned a cDNA, called myogenin, that plays an important role in these processes. Myogenin is expressed exclusively in skeletal muscle in vivo and myogenic cell lines in vitro. Its expression is sharply upregulated during differentiation. When constitutively expressed in fibroblasts, myogenin converts these cells to the myogenic lineage. Transfected cells behave as myogenic tissue culture cells with respect to the genes they express, the way they respond to environmental cues, and are capable of fusing to form multinucleated myotubes. Sequence analysis showed that this cDNA has homology to a family of transcription factors in a region of 72 amino acids known as the basic helix-loop-helix motif. This domain appears to mediate binding to a DNA sequence element known as an E-box (CANNTG) essential for the activity of the enhancers of many muscle-specific genes.^ Analysis of myogenin in tissue culture cells showed that its expression is responsive to many of the environmental cues, such as the presence of growth factors and oncogenes, that modulate myogenesis. In an attempt to identify the cis- and trans-elements that control myogenin expression and thereby understand what factors are responsible for the establishment of the myogenic lineage, we have cloned the myogenin gene. After analysis of the gene structure, we constructed a series of reporter constructs from the 5$\prime$ upstream sequence of the myogenin gene to determine which cis-acting sequences might be important in myogenin regulation. We found that 184 nucleotides of the 5$\prime$ sequence was sufficient to direct high-level muscle-specific expression of the reporter gene. Two sequence elements present in the 184 fragment, an E-box and a MEF-2 site, have been shown previously to be important in muscle-specific transcription. Mutagenesis of these sites revealed that both sites are necessary for full activity of the myogenin promoter, and suggests that a complex hierarchy of transcription factors control myogenic differentiation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myogenin is a member of the MyoD family of skeletal muscle specific bHLH transcription factors. All of the members of this family have been shown to initiate the muscle differentiation cascade in a variety of nonmuscle cell lines. Many of the properties of the MyoD family have been studied in vitro, but their in vivo roles had not yet been examined. In this thesis, I study the in vivo role of myogenin by creating mice that carry a mutation at the myogenin locus.^ Mice lacking the myogenin protein are born alive, but immobile. Histological examination showed that these mice are severely deficient in skeletal muscle; they show a reduction in the number and density of myofibers. In addition to the reduction in fiber number, these mice express lower levels of a variety of muscle-specific markers. The undifferentiated cells in the muscle forming regions of these mice do express some muscle-specific markers, indicating that these cells are determined but undifferentiated myoblasts. Additional studies show that the major muscle defect arises late in embryogenesis, at a time coincident with secondary myogenesis. Moreover, studies regarding the nature of the remaining myofibers indicate that they are representative of a normal population of myofibers, merely reduced in numbers. In addition, I studied the effects of combining the myogenin mutation with mutations in two other members of the MyoD family, MyoD and myf5. Mice mutant in myogenin + MyoD and myogenin + myf5 show no increase in the severity of the myogenin single mutation, as indicated by histological or molecular examination. These results reveal the unique and essential role of myogenin in mammalian skeletal myogenesis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MRF4 is one of four skeletal muscle specific regulatory genes, (the other three genes being MyoD, myf5, and myogenin), each of which has the unique ability to orchestrate an entire program of muscle-specific transcription when introduced into diverse cell types. These findings have led to the notion that these factors function as master regulators of muscle cell fate. Analysis of mice lacking MyoD, myf5, and myogenin have further defined their roles in the commitment and differentiation of myotomal progenitor cells. Current data strongly supports the model that MyoD and myf5 share functional redundancy in determining the muscle cell lineage, while myogenin acts downstream of MyoD and myf5, to initiate myoblast differentiation. Unlike other myogenic bHLH genes, MRF4 is expressed predominantly in the adult, suggesting that it may function to regulate adult muscle maturation and maintenance. To test this hypothesis and to eventually incorporate MRF4 into a general model for muscle specification, differentiation, maturation and maintenance, I deleted the MRF4 gene. MRF4-null mice are viable and fertile, however, they show mild rib anomalies. In addition, the expression of myogenin is dramatically upregulated only in the adult, suggesting that myogenin may compensate for the loss of MRF4 in the adult, and MRF4 may normally suppress the expression of myogenin after birth. MRF4 is also required during muscle regeneration after injury.^ To determine the degree of genetic redundancy between MRF4-myogenin; and MRF4-MyoD, I crossed the MRF4-null mice with MyoD- and myogenin-null mice respectively. There are no additional muscle phenotypes in double-null progeny from a MRF4 and myogenin cross, suggesting that the existence of residual fibers in myogenin-null mice is not due to the presence of MRF4. MRF4 expression also cannot account for the ability of myogenin-null myoblasts to differentiate in vitro. However, the combination of the MRF4-null mutation with the myogenin-null mutation results in a novel rib phenotype. This result suggests that MRF4 modifies the myogenin-null rib phenotype, and MRF4 and myogenin play redundant roles in rib development.^ MRF4 also shares dosage effects with MyoD during mouse development. (MyoD+/$-$;MRF4$-$/$-$)mice are fertile and viable, while (MyoD$-$/$-$;MRF4+/$-$) mice die between birth and two weeks after birth, and have a small skeletal structure. The double homozygous mice for MRF4 and MyoD mutations are embryonic lethal and die at around E10.5. These results suggest that MRF4 and MyoD share overlapping functions during mouse embryogenesis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms that regulate the formation of multinucleated muscle fibers from mononucleated myoblasts are not well understood. We show here that extracellular matrix (ECM) receptors of the beta1 integrin family regulate myoblast fusion. beta1-deficient myoblasts adhere to each other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that regulates cell fusion is no longer expressed at the cell surface of beta1-deficient myoblasts, suggesting that beta1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, beta1 integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin glycoprotein complex are still expressed but cannot compensate for the loss of beta1 integrins, providing evidence that different ECM receptors have nonredundant functions in skeletal muscle fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human embryonic stem cells (hESCs) have the potential to differentiate to all adult somatic cells. This property makes hESCs a very promising area of research for the treatment of disorders in which specific cell populations need to be restored. Despite this potential, research that focuses on producing mesodermally derived cell populations from hESCs is decidedly limited, notwithstanding the prevalence of disorders involving mesodermal tissues for which treatment options are limited. Skeletal muscle myoblasts are derivatives of mesodermal cells and are characterized by the expression of the MyoD gene. These cells are difficult to obtain from hESCs in a reproducible and efficient manner. Recent developments in the field have showed some success in obtaining myogenic cells from hESCs through a mesenchymal stem cell (MSC)-like intermediate population. MSCs, which are an adult stem cell population typically derived from the bone marrow, are capable of generating multiple cell types including skeletal muscle. The aim of this study was to develop an efficient method that derives myoblasts from an MSC-like intermediate. To accomplish this goal, we first set out to isolate and expand the MSC-like intermediate from hESCs differentiated in vitro. Difficulties in reproducing published cell-differentiation methodologies, which represent a significant and familiar challenge in hESC research, are highlighted in this report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although mechanisms regulating the formation of embryonic skeletal muscle are well characterized, less is known about muscle formation in postnatal life. This disparity is unfortunate because the largest increases in skeletal muscle mass occur after birth. Adult muscle stem cells (satellite cells) appear to recapitulate the events that occur in embryonic myoblasts. In particular, the myogenic basic helix-loop-helix factors, which have crucial functions in embryonic muscle development, are assumed to have similar roles in postnatal muscle formation. Here, I test this assumption by determining the role of the myogenic regulator myogenin in postnatal life. Myogenin-null mice die at birth, necessitating the generation of floxed alleles of myogenin and the use of cre-recombinase lines to delete myogenin. Removing myogenin before embryonic muscle development resulted in myofiber deficiencies identical to those observed in myogenin-null mice. However, mice in which myogenin was deleted following embryonic muscle development had normal skeletal muscle, except for modest alterations in MRF4 and MyoD expression. Notably, myogenin-deleted mice were 30% smaller than controls, suggesting that myogenin's absence disrupted general body growth. These results suggest that skeletal muscle growth in postnatal life is controlled by mechanisms distinct from those occurring in embryonic muscle development. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of muscle differentiation, like cell differentiation in general, is only now beginning to be understood. Here are described several key features to myogenesis: a beginning, some intermediary events, and an endpoint. Muscle differentiation proceeds spontaneously when myoblasts are cultured in serum-poor medium. Transforming growth factor type $\beta$ (TGF$\beta$), a component of fetal serum, was found to potently suppress muscle differentiation. Prolonged blockade of differentiation required replenishing TGF$\beta$. When TGF$\beta$ was removed, cells rapidly differentiated. Both TGF$\beta$ and RAS, which also blocks myogenesis, suppress the genes for a series of muscle-specific proteins. Regions that regulate transcription of one such gene, muscle creatine kinase (mck), were located by linking progressively smaller parts of the mck 5$\sp\prime$ region to the marker gene cat and testing the constructs for regulated expression of cat in myoblasts and muscle cells. The mck promoter is not muscle-specific but requires activation. Two enhancers were found: a weak, developmentally regulated enhancer within the first intron, and a strong, compact, and tightly developmentally regulated enhancer about 1.2 Kb upstream of the transcription start site. Activity of this enhancer is eliminated by activated ras. Suppression of activated N-RAS restores potency to the upstream enhancer. Further deletion shows the mck 5$\sp\prime$ enhancer to contain an enhancer core with low but significant muscle-specific activity, and at least one peripheral element that augments core activity. The core and this peripheral element were comprised almost entirely of factor-binding motifs. The peripheral element was inactive as a single copy, but was constitutively active in multiple copies. Regions flanking the peripheral element augmented its activity and conferred partial muscle-specificity. The enhancer core is also modulated by its 5$\sp\prime$ flanking region in a complex manner. Site-specific mutants covering most of the enhancer core and interesting flanking sequences have been made; all mutants tested diminish the activity of the 5$\sp\prime$ enhancer. Alteration of the site to which MyoD1 is reported to bind completely inactivates the enhancer. A theoretical analysis of cooperativity is presented, through which the binding of a constitutively expressed nuclear factor is shown to have weak positive cooperativity. In summary, TGF$\beta$, RAS, and enhancer-binding factors are found to be initial, intermediary, and final regulators, respectively, of muscle differentiation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, cell culture systems that include nanoscale topography are widely used in order to provide cells additional cues closer to the in vivo environment, seeking to mimic the natural extracellular matrix. Electrospinning is one of the most common techniques to produce nano fiber mats. However, since many sensitive parameters play an important role in the process, a lack of reproducibility is a major drawback. Here we present a simple and robust methodology to prepare reproducible electrospun-like samples. It consists of a polydimethylsiloxane mold reproducing the fiber pattern to solvent-cast a polymer solution and obtain the final sample. To validate this methodology, poly(L-lactic) acid (PLLA) samples were obtained and, after characterisation, bioactivity and ability to direct cell response were assessed. C2C12 myoblasts developed focal adhesions on the electrospun-like fibers and, when cultured under myogenic differentiation conditions, similar differentiation levels to electrospun PLLA fibers were obtained.