868 resultados para Mutated HOXB4


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altered expression of the INT6 gene, encoding the e subunit of the translational initiation factor eIF3, occurs in human breast cancers, but how INT6 relates to carcinogenesis remains unestablished. Here, we show that INT6 is involved in the DNA damage response. INT6 was required for cell survival following γ-irradiation and G(2)-M checkpoint control. RNA interference-mediated silencing of INT6 reduced phosphorylation of the checkpoint kinases CHK1 and CHK2 after DNA damage. In addition, INT6 silencing prevented sustained accumulation of ataxia telangiectasia mutated (ATM) at DNA damage sites in cells treated with γ-radiation or the radiomimetic drug neocarzinostatin. Mechanistically, this result could be explained by interaction of INT6 with ATM, which together with INT6 was recruited to the sites of DNA damage. Finally, INT6 silencing also reduced ubiquitylation events that promote retention of repair proteins at DNA lesions. Accordingly, accumulation of the repair factor BRCA1 was defective in the absence of INT6. Our findings reveal unexpected and striking connections of INT6 with ATM and BRCA1 and suggest that the protective action of INT6 in the onset of breast cancers relies on its involvement in the DNA damage response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of the first receptor tyrosine kinase (RTK) proteins in the late 1970s and early 1980s, many scientists have explored the functions of these important cell signaling molecules. The finding that these proteins are often deregulated or mutated in diseases such as cancers and diabetes, together with their potential as clinical therapeutic targets, has further highlighted the necessity for understanding the signaling functions of these important proteins. The mechanisms of RTK regulation and function have been recently reviewed by Lemmon & Schlessinger (2010) but in this review we instead focus on the results of several recent studies that show receptor tyrosine kinases can function from subcellular localisations, including in particular the nucleus, in addition to their classical plasma membrane location. Nuclear localisation of receptor tyrosine kinases has been demonstrated to be important for normal cell function but is also believed to contribute to the pathogenesis of several human diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetically distinct checkpoints, activated as a consequence of either DNA replication arrest or ionizing radiation-induced DNA damage, integrate DNA repair responses into the cell cycle programme. The ataxia-telangiectasia mutated (ATM) protein kinase blocks cell cycle progression in response to DNA double strand breaks, whereas the related ATR is important in maintaining the integrity of the DNA replication apparatus. Here, we show that thymidine, which slows the progression of replication forks by depleting cellular pools of dCTP, induces a novel DNA damage response that, uniquely, depends on both ATM and ATR. Thymidine induces ATM-mediated phosphorylation of Chk2 and NBS1 and an ATM-independent phosphorylation of Chk1 and SMC1. AT cells exposed to thymidine showed decreased viability and failed to induce homologous recombination repair (HRR). Taken together, our results implicate ATM in the HRR-mediated rescue of replication forks impaired by thymidine treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We sought to identify fibroblast growth factor receptor 2 (FGFR2) kinase domain mutations that confer resistance to the pan-FGFR inhibitor, dovitinib, and explore the mechanism of action of the drug-resistant mutations. We cultured BaF3 cells overexpressing FGFR2 in high concentrations of dovitinib and identified fourteen dovitinib-resistant mutations, including the N550K mutation observed in 25% of FGFR2mutant endometrial cancers (EC). Structural and biochemical in vitro kinase analyses, together with BaF3 proliferation assays, showed that the resistance mutations elevate the intrinsic kinase activity of FGFR2. BaF3 lines were used to assess the ability of each mutation to confer cross-resistance to PD173074 and ponatinib. Unlike PD173074, ponatinib effectively inhibited all the dovitinib-resistant FGFR2 mutants except the V565I gatekeeper mutation, suggesting ponatinib but not dovitinib targets the active conformation of FGFR2 kinase. EC cell lines expressing wild-type FGFR2 were relatively resistant to all inhibitors. Whereas EC cell lines expressing mutated FGFR2 showed differential sensitivity. Within the FGFR2mutant cell lines, 3/7 showed marked resistance to PD173074 and relative resistance to dovitinib and ponatinib. This suggests that alternative mechanisms distinct from kinase domain mutations are responsible for intrinsic resistance in these three EC lines. Finally, overexpression of FGFR2N550K in JHUEM-2 cells (FGFR2C383R) conferred resistance (~5 fold) to PD173074, providing independent data that FGFR2N550K can be associated with drug resistance. Biochemical in vitro kinase analyses also shows ponatinib is more effective than dovitinib at inhibiting FGFR2N550K. We propose tumors harboring mutationally activated FGFRs should be treated with FGFR inhibitors that specifically bind the active kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bananas (Musa sp) are one of the most important food crops in the world and provide a staple food and source of income in many households especially in Africa. Diseases are a major constraint to production with bunchy top, caused by Banana bunchy top virus (BBTV) generally considered the most important virus disease of bananas worldwide. Of the fungal diseases, Fusarium wilt, caused by the Fusarium oxysporum f.sp cubense (Foc), and black Sigatoka, caused by Mycosphaerella fijiensis, are arguably two of the most important and cause significant yield losses. The low fertility of commercially important banana cultivars has hampered efforts to generate disease resistance using conventional breeding. Possible alternative strategies to generate or increase disease resistance are through genetic engineering or by manipulation of the innate plant defence mechanisms, namely systemic acquired resistance (SAR). The first research component of this thesis describes attempts to generate BBTV-resistant banana plants using a genetic modification approach. The second research component of the thesis focused on the identification of a potential marker gene associated with SAR in banana plants and a comparison of the expression levels of the marker gene in response to biotic and abiotic stresses, and chemical inducers. Previous research at QUT CTCB showed that replication of BBTV DNA components in banana embryogenic cell suspensions (ECS) was abolished following co-bombardment with 1.1mers of mutated BBTV DNA-R. BBTV DNA-R encodes the master replication protein (Rep) and is the only viral protein essential for BBTV replication. In this study, ECS of banana were stably transformed with the same constructs, each containing a different mutation in BBTV DNA-R, namely H41G, Y79F and K187M, to examine the effect on virus replication in stably transformed plants. Cells were also transformed with a construct containing a native BBTV Rep. A total of 16, 16, 11 and five lines of stably transformed banana plants containing the Y79F, H41G, K187M and native Rep constructs, respectively, were generated. Of these, up to nine replicates from Y79F lines, four H41G lines, seven K187M lines and three native Rep lines were inoculated with BBTV by exposure to viruliferous aphids in two separate experiments. At least one replicate from each of the nine Y79F lines developed typical bunchy top symptoms and all tested positive for BBTV using PCR. Of the four H41G lines tested, at least one replicate from three of the lines showed symptoms of bunchy top and tested positive using PCR. However, none of the five replicates of one H41G line (H41G-3) developed symptoms of bunchy top and none of the plants tested positive for BBTV using PCR. Of the seven K187M lines, at least one replicate of all lines except one (K187M-1) developed symptoms of bunchy top and tested positive for BBTV. Importantly, none of the four replicates of line K187M-1 showed symptoms or tested positive for BBTV. At least one replicate from each of the three native Rep lines developed symptoms and tested positive for BBTV. The H41G-3 and K187M-1 lines possibly represent the first transgenic banana plants generated using a mutated Rep strategy. The second research component of this thesis focused on the identification of SAR-associated genes in banana and their expression levels in response to biotic and abiotic stresses and chemical inducers. The impetus for this research was the observation that tissue-cultured (TC) banana plants were more susceptible to Fusarium wilt disease (and possibly bunchy top disease) than plants grown from field-derived suckers, possibly due to decreased levels of SAR gene expression in the former. In this study, the pathogenesis-related protein 1 (PR-1) gene was identified as a potential marker for SAR gene expression in banana. A quantitative real-time PCR assay was developed and optimised in order to determine the expression of PR-1, with polyubiquitin (Ubi-1) found to be the most suitable reference gene to enable relative quantification. The levels of PR-1 expression were subsequently compared in Lady Finger and Cavendish (cv. Williams) banana plants grown under three different environmental conditions, namely in the field, the glass house and in tissue-culture. PR-1 was shown to be expressed in both cultivars growing under different conditions. While PR-1 expression was highest in the field grown bananas and lowest in the TC bananas in Lady Finger cultivar, this was not the case in the Cavendish cultivar with glass house plants exhibiting the lowest PR-1 expression compared with tissue culture and field grown plants. The important outcomes of this work were the establishment of a qPCR-based assay to monitor PR-1 expression levels in banana and a preliminary assessment of the baseline PR-1 expression levels in two banana cultivars under three different growing conditions. After establishing the baseline PR-1 expression levels in Cavendish bananas, a study was done to determine whether PR-1 levels could be increased in these plants by exposure to known banana pathogens and non-pathogens, and a known chemical inducer of SAR. Cavendish banana plants were exposed to pathogenic Foc subtropical race 4 (FocSR4) and non-pathogenic Foc race 1 (Foc1), as well as two putative inducers of resistance, Fusarium lycopersici (Fol) and the chemical, acibenzolar-S-methyl (BION®). Tissue culture bananas were acclimatised under either glass house (TCS) or field (TCH) conditions and treatments were carried out in a randomised complete block design. PR-1 expression was determined using qPCR for both TCS and TCH samples for the period 12-72h post-exposure. Treatment of TCH plants using Foc1 and FocSR4 resulted in 120 and 80 times higher PR-1 expression than baseline levels, respectively. For TCS plants treated with Foc1, PR-1 expression was 30 times higher than baseline levels at 12h post-exposure, while TCS plants treated with FocSR4 showed the highest PR-1 expression (20 times higher than baseline levels) at 72h post-exposure. Interestingly, when TCS plants were treated with Fol there was a marked increase of PR-1 expression at 12 h and 48 h following treatment which was 4 and 8 times higher than the levels observed when TCS plants were treated with Foc1 and FocSR4, respectively. In contrast, when TCH plants were treated with Fol only a slight increase in PR-1 expression was observed at 12 h, which eventually returned to baseline levels. Exposure of both TCS and TCH plants to BION® resulted in no effect on PR-1 expression levels at any time-point. The major outcome of the SAR study was that the glass house acclimatised tissue culture bananas exhibited lower PR-1 gene expression compared to field acclimatised tissue culture plants and the identification of Fol as a good candidate for SAR induction in banana plants exhibiting low PR-1 levels. A number of outcomes that foster understanding of both pathogen-derived and plant innate resistance strategies in order to potentially improve banana resistance to diseases were explored in this study and include identification of potential inducers of systemic acquired resistance and a promising mutated Rep approach for BBTV resistance. The work presented in this thesis is the first report on the generation of potential BBTV resistant bananas using the mutated Rep approach. In addition, this is the first report on the status of SAR in banana grown under different conditions of exposure to the biotic and abiotic environment. Further, a robust qPCR assay for the study of gene expression using banana leaf samples was developed and a potential inducer of SAR in tissue culture bananas identified which could be harnessed to increase resistance in tissue culture bananas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focal segmental glomerulosclerosis (FSGS) is the consequence of a disease process that attacks the kidney's filtering system, causing serious scarring. More than half of FSGS patients develop chronic kidney failure within 10 years, ultimately requiring dialysis or renal transplantation. There are currently several genes known to cause the hereditary forms of FSGS (ACTN4, TRPC6, CD2AP, INF2, MYO1E and NPHS2). This study involves a large, unique, multigenerational Australian pedigree in which FSGS co-segregates with progressive heart block with apparent X-linked recessive inheritance. Through a classical combined approach of linkage and haplotype analysis, we identified a 21.19 cM interval implicated on the X chromosome. We then used a whole exome sequencing approach to identify two mutated genes, NXF5 and ALG13, which are located within this linkage interval. The two mutations NXF5-R113W and ALG13-T141L segregated perfectly with the disease phenotype in the pedigree and were not found in a large healthy control cohort. Analysis using bioinformatics tools predicted the R113W mutation in the NXF5 gene to be deleterious and cellular studies support a role in the stability and localization of the protein suggesting a causative role of this mutation in these co-morbid disorders. Further studies are now required to determine the functional consequence of these novel mutations to development of FSGS and heart block in this pedigree and to determine whether these mutations have implications for more common forms of these diseases in the general population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors) or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated. Methods The association of polymorphic variants of GRIA1-GRIA4 genes which encode for the four subunits (GluR1-GluR4) of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor for glutamate was tested in migraineurs with and without aura (MA and MO) and healthy controls. Results Two variants in the regulative regions of GRIA1 (rs2195450) and GRIA3 (rs3761555) genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively), but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in GRIA1 gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of GRIA1 and GRIA3 genes in different conditions. Conclusions This study represents the first genetic evidence of a link between glutamate receptors and migraine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor tyrosine kinases (RTKs) and their downstream signalling pathways have long been hypothesized to play key roles in melanoma development. A decade ago, evidence was derived largely from animal models, RTK expression studies and detection of activated RAS isoforms in a small fraction of melanomas. Predictions that overexpression of specific RTKs implied increased kinase activity and that some RTKs would show activating mutations in melanoma were largely untested. However, technological advances including rapid gene sequencing, siRNA methods and phospho-RTK arrays now give a more complete picture. Mutated forms of RTK genes including KIT, ERBB4, the EPH and FGFR families and others are known in melanoma. Additional over- or underexpressed RTKs and also protein tyrosine phosphatases (PTPs) have been reported, and activities measured. Complex interactions between RTKs and PTPs are implicated in the abnormal signalling driving aberrant growth and survival in malignant melanocytes, and indeed in normal melanocytic signalling including the response to ultraviolet radiation. Kinases are considered druggable targets, so characterization of global RTK activity in melanoma should assist the rational development of tyrosine kinase inhibitors for clinical use. © 2011 John Wiley & Sons A/S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. ©2011 AACR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumour heterogeneity is a key characteristic of cancer and has significant implications relating to tumour response to chemotherapy as well as patient prognosis and potential relapse. It is being increasingly accepted that tumours are clonal in origin, suggestive of a tumour arising from a deregulated or mutated cell. Cancer stem cells (CSC) possess these capabilities, and with appropriate intracellular triggers and/or signalling from extracellular environments, can purportedly differentiate to initiate tumour formation. Additionally through epithelial mesenchymal plasticity (EMP), where cells gain and maintain characteristics of both epithelial and mesenchymal cell types, epithelial-derived tumour cells have been shown to de-differentiate to acquire cancer stem attributes, which also impart chemotherapy resistance. This new paradigm places EMP centrally in the process of tumour progression and metastasis, as well as modulating drug response to current forms of chemotherapy. Furthermore, EMP and CSCs have been identified in cancers arising from different tissue types making it a possible generic therapeutic target in cancer biology. Using breast cancer (BrCa) as an example, we summarise here the current understanding of CSCs, the role of EMP in cancer biology - especially in CSCs and different molecular subtypes, and the implications this has for current and future cancer treatment strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichoderma reesei Rut-C30 is used widely as an expression host for various gene products. We have explored cellular effects caused by the expression of a mutant form of cellobiohydrolase I (CBHI), the major secreted protein of T. reesei using biochemical and transcriptomic analyses and confocal laser scanning microscopy. The mutated CBHI was tagged fluorescently with Venus to establish the subcellular location of the fusion protein and its potential association with the proteasome, an organelle assigned for the disposal of misfolded proteins. Expression of the mutant CBHI in the high protein-secreting host Rut-C30 caused physiological changes in the fungal hyphae, affected protein secretion and elicited ER stress. A massive upregulation of UPR- and ERAD-related genes sec61, der1, uba1, bip1, pdi1, prp1, cxl1 and lhs1 was observed by qRT-PCR in the CBHIΔ4-Venus strain with four mutations introduced in the DNA encoding the core domain of CBHI. Further stress was applied to this strain by inhibiting function of the proteasome with MG132 (N-benzoylcarbonyl(Cbz)-Leu-Leu-leucinal). The effect of MG132 was found to be specific to the proteasome-associated genes. There are no earlier reports on the effect of proteasome inhibition on protein quality control in filamentous fungi. Confocal fluorescence microscopy studies suggested that the mutant CBHI accumulated in the ER and colocalized with the fungal proteasome. These results provide an indication that there is a limit to how far T. reesei Rut-C30, already under secretion stress, can be pressed to produce higher protein yields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro invasion and in vivo metastasis assays were performed with a panel of MCF-7 cells transfected with isogenic constructs of mutated ras(H) genes. Both increased levels of ras(H) expression and ras(H) oncogene activation increased activity of derivative cell lines in in vitro invasion assays. In vivo formation of spontaneous metastases was assessed after intradermal inoculation of MCF-7 cells in the vicinity of the mammary fat pads of ovariectomized nude mice. No metastases were seen in the absence of estradiol treatment of the mice. With estradiol supplementation of the mice both the ras(H)-transfected and control transfected cell lines gave a higher incidence of metastases than parental MCF-7 cells. Prolonged treatment of mice with exogenous estradiol (60 days vs. 21 days) resulted in more frequent metastases to liver and lung at the end of the 90-day observation period. In contrast to activated ras(H)-gene enhancement of metastatic capacity of rodent fibroblast and epithelial cell lines, there was no correlation of ras(H) expression with in vivo metastatic capacity of a human mammary carcinoma cell line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BRAF is one of the most commonly mutated proto-oncogenes and plays a significant role in the development of numerous cancers of high clinical impact. Due to the commonality of BRAF mutations, a number of BRAF inhibitors have been developed as tools in the management of patients with cancers dependent on the action of mutant BRAF to drive cellular proliferation. In this review, we examine the current state of clinical trials and laboratory research concerning BRAF inhibitors in development and available for clinical use. We contrast the effectiveness of type-I and type-II BRAF inhibitors, the former typically showing much more restricted inhibitory selectivity and greater patient response rates.