998 resultados para Mutagenic activity
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The food dye tartrazine (CI 19140) was exposed to UV irradiation from an artificial source, a mercury vapor lamp, and a natural one, sunlight. It was observed that conditions such as energy dose, irradiation time, pH and initial dye concentration affected its discoloration. There was 100% of color removal, after 30 min of irradiation, when a dye solution 1 x 10(-5) mol L-1 was submitted to an energy dose of 37.8 J cm(-2). Liquid Chromatography coupled to Diode Array Detection and Mass Spectrometry confirmed the cleavage of the chromophore group and the formation of five by-products at low concentration. Although by-products were formed, the Salmonella/microsome mutagenicity assay performed for both, the dye solution at a dose of 5.34 mg/plate and the solutions obtained after exposure to UV irradiation, did not present mutagenic activity for TA98 and TA100 with and without S9. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Processo FAPESP
Resumo:
Palladium(II) complexes are an important class of cyclopalladated compounds that play a pivotal role in various pharmaceutical applications. Here, we investigated the antitumour, anti-infl ammatory, and mutagenic effects of two complexes: [Pd(dmba)(Cl)tu] (1) and [Pd(dmba)(N3)tu] (2) (dmba = N,N-dimethylbenzylamine and tu = thiourea), on Ehrlich ascites tumour (EAT) cells and peritoneal exudate cells (PECs) from mice bearing solid Ehrlich tumour. The cytotoxic effects of the complexes on EAT cells and PECs were assessed using the 3-(4,5-dimethylthiazol-3-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The effects of the complexes on the immune system were assessed based on the production of nitric oxide (NO) (Griess assay) and tumour necrosis factor-Į (TNF-Į), interleukin-12 (IL-12), and interleukin-10 (IL-10) (ELISA). Finally the mutagenic activity was assessed by the Ames test using the Salmonella typhimurium strain TA 98. Cisplatin was used as a standard. The IC50 ranges for the growth inhibition of EAT cells and PECs were found to be (72.8 ± 3.23) µM and (137.65 ± 0.22) µM for 1 and (39.7 ± 0.30) µM and (146.51 ± 2.67) µM for 2, respectively. The production of NO, IL-12, and TNF-Į, but not IL-10, was induced by both complexes and cisplatin. The complexes showed no mutagenicity in vitro, unlike cisplatin, which was mutagenic in the strain. These results indicate that the complexes are not mutagenic and have potential immunological and antitumour activities. These properties make them promising alternatives to cisplatin.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the neotropical savannah, Astronium species are used in popular medicine to treat allergies, inflammation, diarrhea and ulcers. Given that natural products are promising starting points for the discovery of novel potentially therapeutic agents, the aim of the present study was to investigate the mutagenic and antimutagenic activities of hydroalcoholic extracts of Astronium spp. The mutagenicity was determined by the Ames test on Salmonella typhimurium strains TA98, TA97a, TA100 and TA102. The antimutagenicity was tested against the direct-acting and indirect-acting mutagens. The results showed that none of the extracts induce any increase in the number of revertants, demonstrating the absence of mutagenic activity. On the other hand, the results on the antimutagenic potential showed a moderate inhibitory effect against NPD and a strong protective effect against B[a]P and AFB1. This study highlights the importance of screening species of Astronium for new medicinal compounds. The promising results obtained open up new avenues for further study and provide a better understanding the mechanisms by which these species act in protecting DNA from damage. However, further pharmacological and toxicological investigations of crude extracts of Astronium spp., as well as of its secondary metabolites, are necessary to determine the mechanism(s) of action to guarantee their safer and more effective application to human health.