868 resultados para Muscle-activity
Resumo:
This study's aim was to identify the effect of oscillation of torques in isometric tasks under identical mechanical conditions on the muscle synergies used. It was hypothesized that bi-functional muscles would play a lesser role in torque oscillation, because they would also generate an undesired oscillation. Thus, changes in muscle synergies were expected as a consequence of oscillation in torque generation. The effect of the trajectory of torque generation was investigated in dual-degrees-of-freedom submaximal isometric oscillation torque tasks at the elbow. The torques were flexion-extension and supination-pronation. Oscillation torques were compared with static torque generations at four torque positions during oscillation. Muscle activity was determined with surface electromyography. Compared with the static torque tasks, the oscillation tasks showed an overall increased muscle activity. The oscillation tasks, however, showed similar activity patterns and muscle synergies compared to the static composite tasks. It was found that the motor system is well able to control different orthogonal combinations of slow torque oscillations and constant torques by employing a single oscillating muscle synergy.
Resumo:
Vibration treatment by oscillating platforms is more and more employed in the fields of exercise physiology and bone research. The rationale of this treatment is based on the neuromuscular system response elicited by vibration loads. surface Electromyography (EMG) is largely utilized to assess muscular response elicited by vibrations and Root Mean Square of the electromyography signals is often used as a concise quantitative index of muscle activity; in general, EMG envelope or RMS is expected to increase during vibration. However, it is well known that during surface bio-potential recording, motion artifacts may arise from relative motion between electrodes and skin and between skin layers. Also the only skin stretch, modifying the internal charge distribution, results in a variation of electrode potential. The aim of this study is to highlight the movements of muscles, and the succeeding relevance of motion artifacts on electrodes, in subjects undergoing vibration treatments. EMGs from quadriceps of fifteen subjects were recorded during vibration at different frequencies (15-40 Hz); Triaxial accelerometers were placed onto quadriceps, as close as possible to muscle belly, to monitor motion. The computed muscle belly displacements showed a peculiar behavior reflecting the mechanical properties of the structures involved. Motion artifact related to the impressed vibration have been recognized and related to movement of the soft tissues. In fact large artifacts are visible on EMGs and patellar electrodes recordings during vibration. Signals spectra also revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with accelerometers data. © 2008 Springer-Verlag.
Resumo:
TEMA: a avaliação da eficiência mastigatória pela análise colorimétrica com beads, pode ser um método promissor, mas não há relatos sobre a sua confiabilidade. OBJETIVO: investigar a confiabiabilidade das beads para teste de eficiência mastigatória e a correlação com a atividade eletromiográfica dos músculos masseter e temporal anterior. MÉTODO: participaram dezenove sujeitos adultos jovens, nove do gênero masculino e dez do feminino com idades entre dezoito e vinte-oito anos, com dentição completa, sem histórico de desordem temporomandibular, trauma, cirurgia na região de cabeça e pescoço, tratamento ortodôntico ou fonoaudiológico. O teste de eficiência mastigatória foi realizado com beads nas condições: mastigação habitual, mastigação unilateral direita e esquerda, com duração de 20 segundos. Simultaneamente, foi realizada a eletromiografia. A atividade em máxima intercuspidação habitual dos dentes também foi registrada. A quantidade de fucsina liberada após a mastigação foi medida usando o espectrofotômetro Beckman DU-7 UV-Visible (Beckman Inc., Palo Alto, CA, USA). RESULTADOS: houve alta confiabilidade do teste de eficiência mastigatória (r = 0,86, p < 0,01) e correlação significante com a atividade eletromiográfica (r = 0,76, p < 0,01). Também houve correlações positivas quando as provas foram analisadas separadamente. CONCLUSÃO: o teste de eficiência mastigatória realizado com beads mostrou-se um método confiável e correlacionado positivamente à atividade eletromiográfica dos músculos temporal anterior e músculos masseter.
Resumo:
Background: Diabetic neuropathy leads to progressive loss of sensation, lower-limb distal muscle atrophy, autonomic impairment, and gait alterations that overload feet. This overload has been associated with plantar ulcers even with consistent daily use of shoes. We sought to investigate and compare the influence of diabetic neuropathy and plantar ulcers in the clinical history of diabetic neuropathic patients on plantar sensitivity, symptoms, and plantar pressure distribution during gait while patients wore their everyday shoes. Methods: Patients were categorized into three groups: a control group (CG; n = 15), diabetic patients with a history of neuropathic ulceration (DUG; n = 8), and diabetic patients without a history of ulceration (DG; n = 10). Plantar pressure variables were measured by Pedar System shoe insoles in five plantar regions during gait while patients wore their own shoes. Results: No statistical difference between neuropathic patients with and without a history of plantar ulcers was found in relation to symptoms, tactile sensitivity, and duration of diabetes. Diabetic patients without ulceration presented the lowest pressure-time integral under the heel (72.1 +/- 16.1 kPa x sec; P=.0456). Diabetic patients with a history of ulceration presented a higher pressure-time integral at the midfoot compared to patients in the control group (59.6 +/- 23.6 kPa x sec x 45.8 +/- 10.4 kPa x sec; P = .099), and at the lateral forefoot compared to diabetic patients without ulceration (70.9 +/- 17.7 kPa sec x 113.2 +/- 61.1 kPa x sec, P = .0193). Diabetic patients with ulceration also presented the lowest weight load under the hallux (0.06 +/- 0.02%, P = .0042). Conclusions: Although presenting a larger midfoot area, diabetic neuropathic patients presented greater pressure-time integrals and relative loads over this region. Diabetic patients with ulceration presented an altered dynamic plantar pressure pattern characterized by overload even when wearing daily shoes. Overload associated with a clinical history of plantar ulcers indicates future appearance of plantar ulcers. (J Am Podiatr Med Assoc 99(4): 285-294, 2009)
Resumo:
Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n = 8), or training involving finger abduction-adduction without external resistance (n = 8). TMS was delivered at rest at intensities from 5 % below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60 % of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency = 21.5 ± 1.4 ms; TMS latency = 23.4 ± 1.4 ms; P < 0.05), which indicates that the site of activation differed between the two forms of stimulation. Training resulted in a significant increase in MVC torque for the resistance-training group, but not the control group. There were no statistically significant changes in the corticospinal properties measured at rest for either group. For the active trials involving both TMS and TES, however, the slope of the relationship between MEP size and the torque exerted was significantly lower after training for the resistance-training group (P < 0.05). Thus, for a specific level of muscle activity, the magnitude of the EMG responses to both forms of transcranial stimulation were smaller following resistance training. These results suggest that resistance training changes the functional properties of spinal cord circuitry in humans, but does not substantially affect the organisation of the motor cortex.
Resumo:
1. The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2. With rapid flexion of the shoulder in response to a visual stimulus, EMG-activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG-coincided with that of transversus abdominis. 3. Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 +/- 1.9 (mean +/- S.E.M.) and 13.5 +/- 1.8 cmH(2)O, respectively. The increases occurred 49 +/- 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 +/- 7 ms. 4. Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5. This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs.
Resumo:
Evaluation of trunk movements, trunk muscle activation, intra-abdominal pressure and displacement of centres of pressure and mass was undertaken to determine whether trunk orientation is a controlled variable prior to and during rapid bilateral movement of the upper limbs. Standing subjects performed rapid bilateral symmetrical upper limb movements in three directions (flexion, abduction and extension). The results indicated a small (0.4-3.3 degrees) but consistent initial angular displacement between the segments of the trunk in a direction opposite to that produced by the reactive moments resulting from limb movement. Phasic activation of superficial trunk muscles was consistent with this pattern of preparatory motion and with the direction of motion of the centre of mass. In contrast, activation of the deep abdominal muscles was independent of the direction of limb motion, suggesting a non-direction specific contribution to spinal stability. The results support the opinion that feedforward postural responses result in trunk movements, and that orientation of the trunk and centre of mass are both controlled variables in relation to rapid limb movements.
Resumo:
There has been considerable interest in the literature regarding the function of transversus abdominis, the deepest of the abdominal muscles, and the clinical approach to training this muscle. With the development of techniques for the investigation of this muscle involving the insertion of fine-wire electromyographic electrodes under the guidance of ultrasound imaging it has been possible to test the hypotheses related to its normal function and function in people with low back pain. The purpose of this review is to provide an appraisal of the current evidence for the role of transversus abdominis in spinal stability, to develop a model of how the contribution of this muscle differs from the other abdominal muscles and to interpret these findings in terms of the consequences of changes in this function.
Resumo:
1. The co-ordination between respiratory and postural functions of the diaphragm was investigated during repetitive upper Limb movement. It was hypothesised that diaphragm activity would occur either tonically or phasically in association with the forces from each movement and that this activity would combine with phasic respiratory activity. 2. Movements of the upper limb and ribcage were measured while standing subjects performed repetitive upper limb movements 'as fast as possible'. Electromyographic (EMG) recordings of the costal diaphragm were made using intramuscular electrodes in four subjects. Surface electrodes were placed over the deltoid and erector spinae muscles. 3. In contrast to standing at rest, diaphragm activity was present throughout expiration at 78 +/- 17% (mean +/- S.D.) of its peak inspiratory magnitude during repeated upper limb movement. 4. Bursts of deltoid and erector spinae EMG activity occurred at the Limb movement frequency (similar to 2.9 Hz). Although the majority of diaphragm EMG power was at the respiratory frequency (similar to 0.4 Hz), a peak was also present at the movement frequency. This finding was corroborated by averaged EMG activity triggered from upper limb movement. In addition, diaphragm EMG activity was coherent with ribcage motion at the respiratory frequency and with upper limb movement at the movement frequency. 5. The diaphragm response was similar when movement was performed while sitting. In addition, when subjects moved with increasing frequency the peak upper limb acceleration correlated with diaphragm EMG amplitude. These findings support the argument that diaphragm contraction is related to trunk control. 6. The results indicate that activity of human phrenic motoneurones is organised such that it contributes to both posture and respiration during a task which repetitively challenges trunk posture.
Resumo:
Three-dimensional trunk motion. trunk muscle electromyography and intra-abdominal pressure were evaluated to investigate the preparatory control of the trunk associated with voluntary unilateral upper limb movement. The directions of angular motion produced by moments reactive to limb movement in each direction were predicted using a three-dimensional model of the body. Preparatory motion of the trunk occurred in three dimensions in the directions opposite to the reactive moments. Electromyographic recordings from the superficial trunk muscles were consistent with preparatory trunk motion. However, activation of transversus abdominis was inconsistent with control of direction-specific moments acting on the trunk. The results provide evidence that anticipatory postural adjustments result in movements and not simple rigidification of the trunk. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In humans, when the stability of the trunk is challenged in a controlled manner by repetitive movement of a limb, activity of the diaphragm becomes tonic but is also modulated at the frequency of limb movement. In addition, the tonic activity is modulated by respiration. This study investigated the mechanical output of these components of diaphragm activity. Recordings were made of costal diaphragm, abdominal, and erector spinae muscle electromyographic activity; intra-abdominal, intrathoracic, and transdiaphragmatic pressures; and motion of the rib cage, abdomen, and arm. During limb movement the diaphragm and transversus abdominis were tonically active with added phasic modulation at the frequencies of both respiration and limb movement. Activity of the other trunk muscles was not modulated by respiration. Intra-abdominal pressure was increased during the period of limb movement in proportion to the reactive forces from the movement. These results show that coactivation of the diaphragm and abdominal muscles causes a sustained increase in intra-abdominal pressure, whereas inspiration and expiration are controlled by opposing activity of the diaphragm and abdominal muscles to vary the shape of the pressurized abdominal cavity.
Resumo:
In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP-without concurrent activity of the abdominal or back extensor muscles-produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to similar to 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (similar to6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: To determine whether voluntary abdominal muscle contraction is associated with pelvic floor muscle activity. Design: Pelvic floor muscle activity was recorded during contractions of the abdominal muscles at 3 different intensities in supine and standing positions. Setting: Research laboratory. Participants: Six women and 1 man with no histories of lower back pain. Interventions: Not applicable. Main Outcome Measures: Electromyographic activity of the pelvic floor muscles was recorded with surface electrodes inserted into the anus and vagina. These recordings were corroborated by measurements of anal and vaginal pressures. Gastric pressure was recorded in 2 subjects. Results: Pelvic floor muscle electromyography increased with contraction of the abdominal muscles. With strong abdominal contraction, pelvic floor muscle activity did not differ from that recorded during a maximal pelvic floor muscle effort. The pressure recordings confirmed these data. The increase in pressure recorded in the anus and vagina preceded the pressure in the abdomen. Conclusions: In healthy subjects, voluntary activity in the abdominal muscles results in increased pelvic floor muscle activity. The increase in pelvic floor pressure before the increase in the abdomen pressure indicates that this response is preprogrammed. Dysfunction of the pelvic floor muscles can result in urinary and fecal incontinence. Abdominal muscle training to rehabilitate those muscles may be useful in treating these conditions.
Resumo:
Study Design: Fine-wire EMG rotator cuff onset time analysis in 2 matched groups of throwers with and without pain. Objective: To identify if there is a difference in the activation patterns of the rotator cuff muscles during a rapid shoulder external rotation task between throwers with and without pain. Background: The coordinated action of the rotator cuff is recognized as essential for glenohumeral joint control in the throwing athlete. Identification of abnormalities occurring in muscle activation patterns for injured athletes is relevant when prescribing rehabilitative exercises. Methods and Measures: Twelve throwers with shoulder pain were compared to a matched group of 11 asymptomatic throwers. Participants were matched for age, height, body mass, and habitual activity. Fine-wire EMG electrodes were inserted into the subscapularis, supraspinatus, and infraspinatus. EMG activity was measured during a reaction time task of rapid shoulder external rotation in a seated position. The timing of onset of EMG activity was analyzed in relation to visualization of a light (reaction time) and to the onset of infraspinatus activity (relative latency). Results: In the group with shoulder pain, the onset of subscapularis activity was found to be significantly delayed (reaction time, P = .0018; relative latency, P = .0005) from the onset of infraspinatus activity when compared to the control group. Conclusions: The presence of shoulder pain in these athletes was associated with a difference in the onset of subscapularis EMG activity during a rapid shoulder external rotation movement. This was an initial step in the understanding of the joint protection mechanisms of the glenohumeral joint and the problems that occur in throwers. This information may assist in providing future guidelines for more effective rehabilitation and prevention strategies for this condition.