124 resultados para Murihiku Terrane


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to to research, the region of Perau, base metal mineralization, Grupo Votorantim Metals conducted a soil sampling on targets predetermined holding its chemical analysis. These reviews have been provided by the company for this work was to evaluate the potential use of these data pedogeochemical multi-element for refinement of the work of geological mapping. We selected six targets: Varginha, Salvador, Guararema Taquara Lisa and Coffin of Mendes, in the municipalities of Adrianople, Cerro Azul and Tunas do Paraná, located in Vale do Ribeira (PR). Both have about 10 km2 and situated in the geological context of the Fold Belt Terrane and the Massif de Joinville. The main rock types are present metasedimentary rocks of low to medium grade metamorphic, interspersed the amphibolites ortoderivados, both belonging to the Complex Perau, gneisses and migmatitic Complex. Applied to the geochemical data descriptive statistical techniques (variogram, kriging and histogram). From the correlation between the distributions of elements with the geological data, we could assess the potential of the proposed methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of diatoms from two lake-sediment cores from southwestern Tasmania that span the Pleistocene-Holocene boundary provides insight about paleolimnological and paleoclimatic change in this region. Both Lake Vera (550 m elevation), in west-central Tasmania, and Eagle Tarn (1,033 m elevation), in south-central Tasmania, have lacustrine records that begin about 12,000 years ago. Despite significant differences in location, elevation, and geologic terrane, both lakes have, had similar, as well as synchronous, limnological histories. Each appears to have been larger and more alkaline 12,000 years ago than at present, and both became shallower through time. Fossil diatom assemblages about 11,500 years old indicate shallow-water environments that fluctuated in pH between acidic and alkaline, and between dilute and possibly slightly saline hydrochemical conditions ( The synchroneity and similar character of the paleolimnological changes at these separate and distinctive sites suggests a regional paleoclimatic cause rather than local environmental effects. Latest Pleistocene climates were apparently more continental and drier than Holocene climates in southwestern Tasmania.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pelagonian Zone and the Vardar Zone in Greece represent the western part of the Hellenide hinterland (Internal Hellenides). While the Pelagonian Zone comprises predominantly crystalline basement and sedimentary cover rocks, the Vardar Zone has long been regarded as an ophiolite-decorated suture zone separating the Pelagonian Zone from the Serbo-Macedonian Massif to the east. Felsic basement rocks from both areas, with the main focus put on the Pelagonian Zone, were dated in order to identify the major crust-forming episodes and to improve the understanding of the evolutionary history of the region. The interpretation of the single-zircon geochronology results was aided by geochemical investigations. The majority of the basement rocks from the Pelagonian Zone yielded Permo-Carboniferous intrusion ages around 300 Ma, underlining the importance of this crust-forming event for the Internal Hellenides of Greece. Geochemically these basement rocks are classified as subduction-related granitoids, which formed in an active continental margin setting. An important result was the identification of a Precambrian crustal unit within the crystalline basement of the Pelagonian Zone. Orthogneisses from the NW Pelagonian Zone yielded Neoproterozoic ages of c. 700 Ma and are so far the oldest known rocks in Greece. These basement rocks, which are also similar to active margin granitoids, were interpreted as remnants of a terrane, the Florina Terrane, which can be correlated to a Pan-African or Cadomian arc. Since the gneisses contain inherited zircons of Middle to Late Proterozoic ages, the original location of the Florina Terrane was probably at the northwestern margin of Gondwana. In the Vardar Zone an important phase of Upper Jurassic felsic magmatism is documented by igneous formation ages ranging from 155 to 164 Ma. The chemical and isotopic composition of these rocks is also in accord with their formation in a volcanic-arc setting at an active continental margin. Older continental material incorporated in the Vardar Zone is documented by 319-Ma-old gneisses and by inherited zircons of mainly Middle Palaeozoic ages. The prevalence of subduction-related igneous rocks indicates that arc formation and accretion orogeny were the most important processes during the evolution of this part of the Internal Hellenides. The geochronological results demonstrate that most of the Pelagonian Zone and the Vardar Zone crystalline basement formed during distinct pre-Alpine episodes at c. 700, 300 and 160 Ma with a predominance of the Permo-Carboniferous magmatic phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the key for the understanding of an orogenic belt is the characterization of the terranes involved and the identification of the suture(s) separating crustal blocks: these are essential information for large-scale paleo-reconstructions. In addition, the structural relationships between the terranes involved in the collisional processes and the eventual UHP relicts may provide first order inputs to exhumation models of subducted rocks. The structure of the Rhodope Massif (northern Greece and southern Bulgaria) results from the stacking of high-grade nappes during a continental collision, which age is comprised between Latest-Jurassic and Early-Cenozoic. UHP and HP relicts, associated with oceanic and ultramafic material, suggest the presence of a dismembered suture zone within the massif. The location of this suture remains unclear; furthermore, up to now, the UHP and eclogitic localities represent isolated spots and no synthesis on their structural position within the massif has been proposed. The first aim of this work is to define the relationships between HP-UHP relicts, crustal blocks, shear zones and amphibolitic material. To achieve this objective, we characterized the accreted blocks in terms of protoliths ages of the orthogneisses mainly along two cross sections on the Greek part of the belt. Geochemical affinities of meta-igneous rocks served as a complementary tool for terrane characterization and geodynamic interpretation. Single-zircon Pb-Pb evaporation and zircon U-Pb SHRIMP dating of orthogneiss protoliths define two groups of intrusion-ages: Permo-Carboniferous and Late Jurassic-Early Cretaceous. Structurally, these two groups correspond to distinct units: the Late Jurassic gneissic complex overthrusts the one bearing the Permo-Carboniferous orthogneisses. Mylonites, eclogites, amphibolites of oceanic affinities, and UHP micaschists, mark a “melange” zone, intensively sheared towards the SW, which separates the two units. Thus, we interpret them as two distinct terranes, the Rhodope and Thracia terranes, separated by the Nestos suture. The correlation of our findings in northern Greece to the Bulgarian part of the Massif suggests a northern rooting of the Nestos Suture. This configuration results of the closure of a marginal oceanic basin of the Tethys system by a north-directed subduction. This interpretation is supported by the geochemical affinities of the orthogneisses: the Late-Jurassic igneous rocks formed by subduction-related magmatism, pprobably the same north-directed subduction that gave rise to the UHP metamorphism of the metasediments of the “melange” zone. It is noteworthy that the UHP-HP relicts seem to be restricted to the contact between the two terranes suggesting that the UHP relicts are exhumed only within the suture zone. Furthermore, the singularity of the suture suggests that the Late-Jurassic subduction explains the occurrence of UHP and eclogite relicts in the Central Rhodope despite the large age range previously attributed the UHP and/or HP stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study two ophiolites and a mafic-ultramafic complexes of the northeastern Aegean Sea, Greece, have been investigated to re-evaluate their petrogenetic evolution and tectonic setting. These complexes are: the mafic-ultramafic complex of Lesvos Island and the ophiolites of Samothraki Island and the Evros area. In order to examine these complexes in detail whole-rock major- and trace-elements as well as Sr and Nd isotopes, and minerals were analysed and U-Pb SHRIMP ages on zircons were determined. The mafic-ultramafic complex of Lesvos Island consists of mantle peridotite thrusted over a tectonic mélange containing metasediments, metabasalts and a few metagabbros. This succession had previously been interpreted as an ophiolite of Late Jurassic age. The new field and geochemical data allow a reinterpretation of this complex as representing an incipient continental rift setting that led to the subsequent formation of the Meliata-Maliac-Vardar branches of Neotethys in Upper Permian times (253 ± 6 Ma) and the term “Lesvos ophiolite” should be abandoned. With proceeding subduction and closure of the Maliac Ocean in Late Jurassic times (155 Ma) the Lesvos mafic-ultramafic complex was obducted. Zircon ages of 777, 539 and 338 Ma from a gabbro strongly suggest inheritance from the intruded basement and correspond to ages of distinct terranes recently recognized in the Hellenides (e.g. Florina terrane). Geochemical similar complexes which contain rift associations with Permo-Triassic ages can be found elsewhere in Greece and Turkey, namely the Teke Dere Thrust Sheet below the Lycian Nappes (SW Turkey), the Pindos subophiolitic mélange (W Greece), the Volcanosedimentary Complex on Central Evia Island (Greece) and the Karakaya Complex (NW Turkey). This infers that the rift-related rocks from Lesvos belong to an important Permo-Triassic rifting episode in the eastern Mediterranean. The ‘in-situ’ ophiolite of Samothraki Island comprises gabbros, sparse dykes and basalt flows as well as pillows cut by late dolerite dykes and had conventionally been interpreted as having formed in an ensialic back-arc basin. The results of this study revealed that none of the basalts and dolerites resemble mid-ocean ridge or back-arc basin basalts thus suggesting that the Samothraki ophiolite cannot represent mature back-arc basin crust. The age of the complex is regarded to be 160 ± 5 Ma (i.e. Oxfordian; early Upper Jurassic), which precludes any correlation with the Lesvos mafic-ultramafic complex further south (253 ± 6 Ma; Upper Permian). Restoration of the block configuration in NE Greece, before extensional collapse of the Hellenic hinterland and exhumation of the Rhodope Metamorphic Core Complex (mid-Eocene to mid-Miocene), results in a continuous ophiolite belt from Guevgueli in the NW to Samothraki in the SE, thus assigning the latter to the Innermost Hellenic Ophiolite Belt. In view of the data of this study, the Samothraki ophiolite represents a rift propagation of the Sithonia ophiolite spreading ridge into the Chortiatis calc-alkaline arc. The ophiolite of the Evros area consists of a plutonic sequence comprising cumulate and non-cumulate gabbros with plagiogranite veins, and an extrusive sequence of basalt dykes, massive and pillow lavas as well as pyroclastic rocks. Furthermore, in the Rhodope Massif tectonic lenses of harzburgites and dunites can be found. All rocks are spatially separated. The analytical results of this study revealed an intra-oceanic island arc setting for the Evros ophiolitic rocks. During late Middle Jurassic times (169 ± 2 Ma) an intra-oceanic arc has developed above a northwards directed intra-oceanic subduction zone of the Vardar Ocean in front of the Rhodope Massif. The boninitic, island arc tholeiitic and calc-alkaline rocks reflect the evolution of the Evros island arc. The obduction of the ophiolitic rocks onto the Rhodope basement margin took place during closure of the Vardar ocean basins. The harzburgites and dunites of the Rhodope Massif are strongly depleted and resemble harzburgites from recent oceanic island arcs. After melt extraction they underwent enrichment processes by percolating melts and fluids from the subducted slab. The relationship of the peridotites and the Evros ophiolite is still ambiguous, but the stratigraphic positions of the peridotites and the ophiolitic rocks indicate separated origin. The harzburgites and dunites most probably represent remnants of the mantle wedge of the island arc of the Rhodope terrane formed above subducted slab of the Nestos Ocean in late Middle Jurassic times. During collision of the Thracia terrane with the Rhodope terrane thrusting of the Rhodope terrane onto the Thracia terrane took place, whereas the harzburgites and dunites were pushed between the two terranes now cropping out on top of the Thracia terrane of the Rhodope Massif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this PhD thesis, a multidisciplinary study has been carried out on metagranitoids and paragneisses from the Eastern Rhodope Massif, northern Greece, to decipher the pre-Alpine magmatic and geodynamic evolution of the Rhodope Massif and to correlate the eastern part with the western/central parts of the orogen. The Rhodope Massif, which occupies the major part of NE Greece and S Bulgaria, represents the easternmost part of the Internal Hellenides. It is regarded as a nappe stack of high-grade units, which is classically subdivided into an upper unit and a lower unit, separated by a SSE-NNW trending thrust plane, the Nestos thrust. Recent research in the central Greek Rhodope Massif revealed that the two units correspond to two distinct terranes of different age, the Permo-Carboniferous Thracia Terrane, which was overthrusted by the Late Jurassic/Early Cretaceous Rhodope Terrane. These terranes are separated by the Nestos suture, a composite zone comprising metapelites, metabasites, metagranitoids and marbles, which record high-pressure and even ultrahigh-pressure metamorphism in places. Similar characteristic rock associations were investigated during this study along several well-constrained cross sections in vincity to the Ada, Sidiro and Kimi villages in the Greek Eastern Rhodope Massif. Field evidence revealed that the contact zone of the two terranes in the Eastern Rhodope Massif is characterized by a mélange of metapelites, migmatitic amphibolites/eclogites, strongly sheared orthogneisses and marbles. The systematical occurrence of this characteristic rock association between the terranes implies that the Nestos suture is a continuous belt throughout the Greek Rhodope Massif. In this study, a new UHP locality could be established and for the first time in the Greek Rhodope, metamorphic microdiamonds were identified in situ in their host zircons using Laser-Raman spectroscopy. The presence of the diamonds as well as element distribution patterns of the zircons, obtained by TOF-SIMS, indicate metamorphic conditions of T > 1000 °C and P > 4 GPa. The high-pressure and ultrahigh-pressure rocks of the mélange zone are considered to have formed during the subduction of the Nestos Ocean in Jurassic times at ~150 Ma. Melting of metapelitic rocks at UHP conditions facilitated the exhumation to lower crustal levels. To identify major crust forming events, basement granitoids were dated by LA-SF-ICPMS and SHRIMP-II U-Pb analyses of zircons. The geochronological results revealed that the Eastern Rhodope Massif consists of two crustal units, a structurally lower Permo-Carboniferous unit corresponding to the Thracia Terrane and a structurally upper Late Jurassic/Early Cretaceous unit corresponding to the Rhodope Terrane, like it was documented for the Central Rhodope Massif. Inherited zircons in the orthogneisses from the Thracia Terrane of the Eastern Rhodope Massif indicate the presence of a pre-existing Neoproterozoic and Ordovician-Silurian basement in this region. Triassic magmatism is witnessed by the zircons of few orthogneisses from the easternmost Rhodope Massif and is interpreted to be related to rifting processes. Whole-rock major and trace element analyses indicate that the metagranitoids from both terranes originated in a subduction-related magmatic-arc environment. The Sr-Nd isotope data for both terranes of the Eastern and Central Rhodope Massif suggest a mixed crust-mantle source with variable contributions of older crustal material as already indicated by the presence of inherited zircons. Geochemical and isotopic similarity of the basement of the Thracia Terrane and the Pelagonian Zone implies that the Thracia Terrane is a fragment of a formerly unique Permo-Carboniferous basement, separated by rifting and opening of the Meliata-Maliac ocean system in Triassic times. A branch of the Meliata-Maliac ocean system, the Nestos Ocean, subducted northwards in Late Jurassic times leading to the formation of the Late Jurassic/Early Cretaceous Rhodope magmatic arc on remnants of the Thracia Terrane as suggested by inherited Permo-Carboniferous zircons. The ~150 Ma zircon ages of the orthogneisses from the Rhodope Terrane indicate that subduction-related magmatism and HP/UHP metamorphism occurred during the same subduction phase. Subduction ceased due to the closure of the Nestos Ocean in the Late Jurassic/Early Cretaceous. The post-Jurassic evolution of the Rhodope Massif is characterized by the exhumation of the Rhodope core complex in the course of extensional tectonics associated with late granite intrusions in Eocene to Miocene times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multiple high-pressure (HP), low-temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction- and continental accretion-related evolution of the eastern limb of the long-lived Aegean subduction system. Recent reports of the HP–LT index mineral Fe-Mg-carpholite in three metasedimentary units of the Gondwana-derived Anatolide–Tauride continental block (namely the Afyon Zone, the Ören Unit and the southern Menderes Massif) suggest a more complicated scenario than the single-continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica 40Ar–39Ar geochronology), and where possible are combined with P–T estimates (chlorite thermometry, phengite barometry, multi-equilibrium thermobarometry), on carpholite-bearing rocks from these three HP–LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite-bearing assemblages were retrogressed through greenschist-facies conditions at c. 67–62 Ma. Early retrograde stages in the Ören Unit are dated to 63–59 Ma. In the Kurudere–Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post-collisional cooling to c. 26 Ma. These new results support that the Ören Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere–Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP–LT metamorphic belts thus formed: the northernmost Tavşanlı Zone (c. 88–82 Ma), the Ören–Afyon Zone (between 70 and 65 Ma), and the Kurudere–Nebiler Unit (c. 52–45 Ma). The southward younging trend of the HP–LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93–90 and c. 35 Ma. After the accretion of the Menderes–Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian-type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll-back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two Proterozoic terranes with different metamorphic histories are distinguished from geological mapping in southwestern Wedel Jarlsberg Land: a northern greenschist facies terrane and a southern amphibolite facies terrane which has been overprinted by greenschist facies metamorphism. To better characterize the tectonothermal history of these terranes we have obtained new Ar-40/Ar-39 mineral dates from this area. A muscovite separate from the northern terrane yielded a Caledonian plateau age of 432 +/- 7 Ma. The southern terrane yielded significantly older Ar-40/Ar-39 ages with three muscovite plateau dates of 584 +/- 14 Ma, 575 +/- 15 Ma, and 459 +/- 9 Ma, a 484 +/- 5 Ma biotite plateau date, and a 616 +/- 17 Ma hornblende plateau date. The oldest thermochronological dates are over 300 Ma younger than the age of amphibolite facies metamorphism and therefore probably do not represent uplift-related cooling. Instead, the Vendian dates correlate well with a regionally widespread magmatic and metamorphic/thermal resetting event recognized within Caledonian complexes of northwestern Spitsbergen and Nordaustlandet. The apparent Ordovician dates are interpreted to represent partial resetting, suggesting that late Caledonian greenschist facies overprinting of the southern terrane was of variable intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Mt. Olympos region of northeastern Greece, continental margin strata and basement rocks were subducted and metamorphosed under blueschist facies conditions, and thrust over carbonate platform strata during Alpine orogenesis. Subsequent exposure of the subducted basement rocks by normal faulting has allowed an integrated study of the timing of metamorphism, its relationship to deformation, and the thermal history of the subducted terrane. Alpine low-grade metamorphic assemblages occur at four structural levels. Three thrust sheets composed of Paleozoic granitic basement and Mesozoic metasedimentary cover were thrust over Mesozoic carbonate rocks and Eocene flysch; thrusting and metamorphism occurred first in the highest thrust sheets and progressed downward as units were imbricated from NE to SW. 40Ar/39Ar spectra from hornblende, white mica, and biotite samples indicate that the upper two units preserve evidence of four distinct thermal events: (1) 293–302 Ma crystallization of granites, with cooling from >550°C to <325°C by 284 Ma; (2) 98–100 Ma greenschist to blueschist-greenschist transition facies metamorphism (T∼350–500°C) and imbrication of continental thrust sheets; (3) 53–61 Ma blueschist facies metamorphism and deformation of the basement and continental margin units at T<350–400°C; (4) 36–40 Ma thrusting of blueschists over the carbonate platform, and metamorphism at T∼200–350°C. Only the Eocene and younger events affected the lower two structural packages. A fifth event, indicated by diffusive loss profiles in microcline spectra, reflects the beginning of uplift and cooling to T<100–150°C at 16–23 Ma, associated with normal faulting which continued until Quaternary time. Incomplete resetting of mica ages in all units constrains the temperature of metamorphism during continental subduction to T≤350°C, the closure temperature for Ar in muscovite. The diffusive loss profiles in micas and K-feldspars enable us to “see through” the younger events to older events in the high-T parts of the release spectra. Micas grown during earlier metamorphic events lost relatively small amounts of Ar during subsequent high pressure-low temperature metamorphism. Release spectra from phengites grown during Eocene metamorphism and deformation record the ages of the Ar-loss events. Alpine deformation in northern Greece occurred over a long time span (∼90 Ma), and involved subduction and episodic imbrication of continental basement before, during, and after the collision of the Apulian and Eurasian plates. Syn-subduction uplift and cooling probably combined with intermittently higher cooling rates during extensional events to preserve the blueschist facies mineral assemblages as they were exhumed from depths of >20 km. Extension in the Olympos region was synchronous with extension in the Mesohellenic trough and the Aegean back-arc, and concurrent with westward-progressing shortening in the external Hellenides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multichronometric analyses were performed on samples from a transect in the French-Italian Western Alps crossing nappes derived from the Briançonnais terrane and the Piemonte-Liguria Ocean, in an endeavour to constrain the high-pressure (HP) metamorphism and the retrogression history. 12 samples of white mica were analysed by 39Ar-40Ar stepwise heating, complemented by 2 samples from the Monte Rosa 100 km to the NE and also attributed to the Briançonnais terrane. One Sm-Nd and three Lu-Hf garnet ages from eclogites were also obtained. White mica ages decrease from ca. 300 Ma in the westernmost samples (Zone Houillère), reaching ca. 300 °C during Alpine metamorphism, to < 48 Ma in the internal units to the East, which reached ca. 500 °C during Alpine orogeny. The conventional “thermochronological” interpretation postulates Cretaceous Eo-Alpine HP metamorphism and younger “cooling ages” in the higher-temperature samples. However, Eocene Lu-Hf and Sm-Nd ages from the same samples cannot be interpreted as post-metamorphic cooling ages, which makes a Cretaceous eclogitization untenable. The age date from this transect require instead to replace conventional “thermochronology” by an approach combining age dating with detailed geochemical, petrological and microstructural investigations. Petrology reveals important mineralogical differences along the transect. Samples from the Zone Houillère mostly contain detrital mica. White mica with Si > 6.45 atoms per formula unit becomes more abundant eastward. Across the whole traverse, HP phengitic mica forms the D1 foliation. Syn-D2 mica is Si-poorer and associated with nappe stacking, exhumation, and hydrous retrogression under greenschist facies conditions. D1 phengite is very often corroded, overgrown or intergrown by syn-D2 muscovite. Most importantly, syn-D2 recrystallization is not limited to S2 schistosity domains; microchemical fingerprinting shows that it also can form pseudomorphs after crystals that could be mistaken to have formed during D1 based on microstructural arguments alone. Thereby the Cl concentration in white mica is a useful discriminator, since D2 retrogression was associated with a less saline fluid than eclogitization. Once the petrological stage is set, geochronology is straightforward. All samples contain mixtures of detrital, syn-D1 and syn-D2 mica, and retrogression phases (D3) in greatly varying proportions according to local pressure-temperature-fluid activity-deformation conditions. The correlation of age vs. Cl/K clearly identifies 47 ± 1 Ma as the age of formation of syn-D1 mica along the entire transect, including the Monte Rosa nappe samples. The inferred age of the greenschist-facies low-Si syn-D2 mica generation ranges within 39-43 Ma, with local variations. Coexistence of D1 and D2 ages, and the constancy of non-reset D1 ages along the entire transect, are strong evidence that the D1 white mica ages are very close to formation ages. Volume diffusion of Ar in white mica (activation energy E = 250 kJ/mol; pressure-adjusted diffusion coefficient D’0 < 0.03 cm2 s-1) has a subordinate effect on mineral ages compared to both prograde and retrograde recrystallization in most samples. Eocene Lu-Hf and Sm-Nd garnet ages are prograde and predate the HP peak.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Byrd Glacier discontinuity us a major boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consits of two-dimensional transects across the belt, but do not adress the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic producede a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of the terrane (Beardmore microcontinent) during the latest Neroproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in the support of this hypothesis are U-Pb dates of 545.7 ± 6.8 Ma and 531.0 ± 7.5 Ma on plutonic rocks from the Britannia Range, subduction stepped out, and Byrd Glacier. After docking of the terrane, subduction stepped out, and Byrd Group was deposited during the Atdabanian-Botomian across the inner margin of the terrane. Beginning in the upper Botomian, reactivation of the sutured boundaries of the terrane resulted in an outpouring of clastic sediment and folding and faulting of the Byrd Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Prince Charles Mountains have been subject to extensive geological and geophysical investigations by former Soviet, Russian and Australian scientists from the early 1970s. In this paper we summarise, and review available geological and isotopic data, and report results of new isotopic studies (Sm-Nd, Pb-Pb, and U-Pb SHRIMP analyses); field geological data obtained during the PCMEGA 2002/2003 are utilised. The structure of the region is described in terms of four tectonic terranes. Those include Archaean Ruker, Palaeoproterozoic Lambert, Mesoproterozoic Fisher, and Meso- to Neoproterozoic Beaver Terranes. Pan-African activities (granite emplacement and probably tectonics) in the Lambert Terrane are reported. We present a summary of the composition of these terranes, discuss their origin and relationships. We also outline the most striking geological features, and problems, and try to draw attention to those rocks and regional geological features which are important in understanding the composition and evolution of the PCM and might suggest targets for further investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling penetrated pre-Mesozoic crystalline basement beneath abbreviated sedimentary sequences overlying fault blocks in the southeastern Gulf of Mexico. At Hole 538A, located on Catoche Knoll, a foliated, regional metamorphic association of variably mylonitic felsic gneisses and interlayered amphibolite is intruded by post-tectonic diabase dikes. Hornblende from the amphibolite displays internally discordant 40Ar/39Ar age spectra, suggesting initial post-metamorphic cooling at about 500 Ma followed by a mild thermal disturbance at about 200 Ma. Biotite from the gneiss yields a plateau age of 348 Ma, which is interpreted to result from incorporation of extraneous argon components when the biotite system was opened during the about 200 Ma thermal overprint. A whole-rich diabase sample from Hole 538A records a crystallization age of 190.4 ± 3.4 Ma. A lower grade phyllitic metasedimentary sequence was penetrated at Hole 537, drilled about 30 km northwest of Catoche Knoll. Whole-rock phyllite samples display internally discordant 40Ar/39Ar age spectra, but plateau segments clearly document an early Paleozoic metamorphism at about 500 Ma. The age and lithologic character of the basement terrane penetrated at Holes 537 and 538A suggest that the drilled fault blocks are underlain by attenuated fragments of continental crust of "Pan-African" affinity. This supports pre-Mesozoic tectonic reconstructions that locate Yucatan in the present Gulf recess during the amalgamation of Pangea.