90 resultados para Multipulse rectifiers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nas últimas décadas, diversos pesquisadores têm tentado empregar moléculas em dispositivos eletrônicos de nanoescala. Por este motivo, diferentes parâmetros eletro/ópticos, que regem o transporte eletrônico em moléculas orgânicas, precisam ser analisados. Neste trabalho foi desenvolvido um estudo de transporte de carga para o composto Vermelho de Propila, popularmente utilizado como indicador de pH. A motivação para estudá-lo resulta de sua estrutura constituída por subunidades doadora-aceitadora, acopladas via grupo azo (N=N), uma característica bem conhecida em retificadores moleculares. A metodologia utilizada para tratar o sistema em equilíbrio é baseada em métodos de Mecânica Molecular e Hartree-Fock. Sendo que, para simular o sistema em não-equilíbrio, foi empregado o formalismo de Landauer-Büttiker. Através desses métodos, as curvas características do sistema molecular foram traçadas e comparadas. O resultado da comparação permitiu explicar os fenômenos que regem o transporte eletrônico na nanoestrutura. Além disso, foram analisados os efeitos de contatos metálicos, ligados a molécula na presença de campo elétrico externo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho apresentamos um estudo teórico da estrutura eletrônica de uma molécula do tipo Doador-dinitrobenzene e um grupo Aceitador-dihydrophenazine (D-A) com pontes poliênicas variando de π = 0 à π = 10. Trata-se de um sistema promissor para o desenvolvimento de retificadores moleculares, que sob dopagem química podem vir a adquirir propriedades elétricas de material condutor. E ainda, sob ação de campo elétrico externo apresenta comportamento equivalente ao de dispositivos usuais, mas com inúmeras vantagens como, por exemplo, tamanho extremamente reduzido e intensa resposta ótica em regime não-linear. Para estudar esse sistema, fizemos otimizações de geometria sistematicamente, levando em conta cálculos de ZINDO/S-CIS (Zerner´s Intermediate Neglect of Differential Orbital/Spectroscopic – Configuration Interaction Single) que utilizam 220 configurações em média. Observamos uma transferência eletrônica calculada por métodos derivados de Hartree-Fock. Nossos resultados mostram uma delocalização bem definida dos Orbitais Moleculares de Fronteira (OMFs) HOMO[LUMO] nos grupos D[A] para molécula com ponte poliênica relativamente grande. Para estruturas com ponte poliênica relativamente pequena o contrário é observado, e uma uniformidade dos OMFs nos terminais DA é verificada. O que indicaria que somente as estruturas com ponte poliênica relativamente grande seriam promissoras pra criação de dispositivos, tendo LUMO como canal de condução. Um estudo detalhado do rearranjo de carga molecular para a mesma estrutura, sob a ação de um campo elétrico externo mostrou que o transporte de carga no grupo D[A] independe do tamanho da ponte poliênica. A voltagem aplicada é intensa o bastante para criar um potencial de saturação para este sistema com grupos DA muito próximos (evidenciando uma região de saturação e uma região de operação para sistemas com pontes pequenas), normalmente presente e sistemas com ponte molecular relativamente grande e nos dispositivos semicondutores macroscópicos. Acreditamos que o OMF LUMO desempenha um papel importante no que diz respeito ao transporte de carga em estruturas relativamente grandes, seguido de falhas em estruturas moleculares onde o grupo D está muito próximo do A. Nossos resultados mostram que temos um retificador molecular que pode trabalhar corretamente como um retificador macroscópico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel single-phase high power factor PWM boost rectifier, featuring soft commutation of the active switches at zero-current (ZCS). It incorporates the most desirable properties of the conventional PWM and the soft-switching resonant techniques. The input current shaping is achieved with average current mode control, and continuous inductor current mode. This new PWM converter provides ZCS turn-on and turn-off of the active switches, and it is suitable for high power applications employing IGBTs. Principle of operation, theoretical analysis, a design example, and experimental results from a laboratory prototype rated at 1600 W with 400 Vdc output voltage are presented. The measured efficiency and power factor were 96.2% and 0.99 respectively, with an input current THD equal to 3.94%, for an input voltage THD equal to 3.8%, at rated load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently there has been an important increase in electric equipment, as well as, electric power demand in aircrafts applications. This prompts to the necessity of efficient, reliable, and low-weight converters, especially rectifiers from 115VAC to 270VDC because these voltages are used in power distribution. In order to obtain a high efficiency, in aircraft application where the derating in semiconductors is high, normally several semiconductors are used in parallel to decrease the conduction losses. However, this is in conflict with high reliability. To match both goals of high efficiency and reliability, this work proposes an interleaved multi-cell rectifier system, employing several converter cells in parallel instead of parallel-connected semiconductors. In this work a 10kW multi-cell isolated rectifier system has been designed where each cell is composed of a buck type rectifier and a full bridge DC-DC converter. The implemented system exhibits 91% of efficiency, high power density (10kW/10kg), low THD (2.5%), and n−1 fault tolerance which complies, with military aircraft standards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free radical-induced oxidant stress has been implicated in a number of physiological and pathophysiological states including ischemia and reperfusion-induced dysrhythmia in the heart, apoptosis of T lymphocytes, phagocytosis, and neurodegeneration. We have studied the effects of oxidant stress on the native K+ channel from T lymphocytes and on K+ channels cloned from cardiac, brain, and T-lymphocyte cells and expressed in Xenopus oocytes. The activity of three Shaker K+ channels (Kv1.3, Kv1.4, and Kv1.5), one Shaw channel (Kv3.4), and one inward rectifier K+ channel (IRK3) was drastically inhibited by photoactivation of rose bengal, a classical generator of reactive oxygen species. Other channel types (such as Shaker K+ channel Kv1.2, Shab channels Kv2.1 and Kv2.2, Shal channel Kv4.1, inward rectifiers IRK1 and ROMK1, and hIsK) were completely resistant to this treatment. On the other hand tert-butyl hydroperoxide, another generator of reactive oxygen species, removed the fast inactivation processes of Kv1.4 and Kv3.4 but did not alter other channels. Xanthine/xanthine oxidase system had no effect on all channels studied. Thus, we show that different types of K+ channels are differently modified by reactive oxygen species, an observation that might be of importance in disease states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Credit is largely due to Frank D. Graham ... for the authorship of the Guides, and for the original sketches illustrating electrical principles and construction."--Pref. to no. 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"August 1956."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate experimentally new families of vector solitons with locked and precessing states of polarization for fundamental and multipulse soliton operations in a carbon nanotube mode-locked fiber laser with anomalous dispersion laser cavity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.