999 resultados para Multiple endpoints


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus pyogenes, also known as Group A Streptococcus (GAS) has been associated with a range of diseases from the mild pharyngitis and pyoderma to more severe invasive infections such as streptococcal toxic shock. GAS also causes a number of non-suppurative post-infectious diseases such as rheumatic fever, rheumatic heart disease and glomerulonephritis. The large extent of GAS disease burden necessitates the need for a prophylactic vaccine that could target the diverse GAS emm types circulating globally. Anti-GAS vaccine strategies have focused primarily on the GAS M-protein, an extracellular virulence factor anchored to GAS cell wall. As opposed to the hypervariable N-terminal region, the C-terminal portion of the protein is highly conserved among different GAS emm types and is the focus of a leading GAS vaccine candidate, J8-DT/alum. The vaccine candidate J8-DT/alum was shown to be immunogenic in mice, rabbits and the non-human primates, hamadryas baboons. Similar responses to J8-DT/alum were observed after subcutaneous and intramuscular immunization with J8-DT/alum, in mice and in rabbits. Further assessment of parameters that may influence the immunogenicity of J8-DT demonstrated that the immune responses were identical in male and female mice and the use of alum as an adjuvant in the vaccine formulation significantly increased its immunogenicity, resulting in a long-lived serum IgG response. Contrary to the previous findings, the data in this thesis indicates that a primary immunization with J8-DT/alum (50ƒÊg) followed by a single boost is sufficient to generate a robust immune response in mice. As expected, the IgG response to J8- DT/alum was a Th2 type response consisting predominantly of the isotype IgG1 accompanied by lower levels of IgG2a. Intramuscular vaccination of rabbits with J8-DT/alum demonstrated that an increase in the dose of J8-DT/alum up to 500ƒÊg does not have an impact on the serum IgG titers achieved. Similar to the immune response in mice, immunization with J8-DT/alum in baboons also established that a 60ƒÊg dose compared to either 30ƒÊg or 120ƒÊg was sufficient to generate a robust immune response. Interestingly, mucosal infection of naive baboons with a M1 GAS strain did not induce a J8-specific serum IgG response. As J8-DT/alum mediated protection has been previously reported to be due to the J8- specific antibody formed, the efficacy of J8-DT antibodies was determined in vitro and in vivo. In vitro opsonization and in vivo passive transfer confirmed the protective potential of J8-DT antibodies. A reduction in the bacterial burden after challenge with a bioluminescent M49 GAS strain in mice that were passively administered J8-DT IgG established that protection due to J8-DT was mediated by antibodies. The GAS burden in infected mice was monitored using bioluminescent imaging in addition to traditional CFU assays. Bioluminescent GAS strains including the ‘rheumatogenic’ M1 GAS could not be generated due to limitations with transformation of GAS, however, a M49 GAS strain was utilized during BLI. The M49 serotype is traditionally a ‘nephritogenic’ serotype associated with post-streptococcal glomerulonephritis. Anti- J8-DT antibodies now have been shown to be protective against multiple GAS strains such as M49 and M1. This study evaluated the immunogenicity of J8-DT/alum in different species of experimental animals in preparation for phase I human clinical trials and provided the ground work for the development of a rapid non-invasive assay for evaluation of vaccine candidates.