829 resultados para Multi-input fuzzy inference system
Resumo:
This research aimed to develop a Fuzzy inference based on expert system to help preventing lameness in dairy cattle. Hoof length, nutritional parameters and floor material properties (roughness) were used to build the Fuzzy inference system. The expert system architecture was defined using Unified Modelling Language (UML). Data were collected in a commercial dairy herd using two different subgroups (H1 and H2), in order to validate the Fuzzy inference functions. The numbers of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) responses were used to build the classifier system up, after an established gold standard comparison. A Lesion Incidence Possibility (LIP) developed function indicates the chances of a cow becoming lame. The obtained lameness percentage in H1 and H2 was 8.40% and 1.77%, respectively. The system estimated a Lesion Incidence Possibility (LIP) of 5.00% and 2.00% in H1 and H2, respectively. The system simulation presented 3.40% difference from real cattle lameness data for H1, while for H2, it was 0.23%; indicating the system efficiency in decision-making.
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively
Resumo:
In this work a modification on ANFIS (Adaptive Network Based Fuzzy Inference System) structure is proposed to find a systematic method for nonlinear plants, with large operational range, identification and control, using linear local systems: models and controllers. This method is based on multiple model approach. This way, linear local models are obtained and then those models are combined by the proposed neurofuzzy structure. A metric that allows a satisfactory combination of those models is obtained after the structure training. It results on plant s global identification. A controller is projected for each local model. The global control is obtained by mixing local controllers signals. This is done by the modified ANFIS. The modification on ANFIS architecture allows the two neurofuzzy structures knowledge sharing. So the same metric obtained to combine models can be used to combine controllers. Two cases study are used to validate the new ANFIS structure. The knowledge sharing is evaluated in the second case study. It shows that just one modified ANFIS structure is necessary to combine linear models to identify, a nonlinear plant, and combine linear controllers to control this plant. The proposed method allows the usage of any identification and control techniques for local models and local controllers obtaining. It also reduces the complexity of ANFIS usage for identification and control. This work has prioritized simpler techniques for the identification and control systems to simplify the use of the method
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Apesar das diversas vantagens oferecidas pelas redes neurais artificiais (RNAs), algumas limitações ainda impedem sua larga utilização, principalmente em aplicações que necessitem de tomada de decisões essenciais para garantir a segurança em ambientes como, por exemplo, em Sistemas de Energia. Uma das principais limitações das RNAs diz respeito à incapacidade que estas redes apresentam de explicar como chegam a determinadas decisões; explicação esta que seja humanamente compreensível. Desta forma, este trabalho propõe um método para extração de regras a partir do mapa auto-organizável de Kohonen, projetando um sistema de inferência difusa capaz de explicar as decisões/classificação obtidas através do mapa. A metodologia proposta é aplicada ao problema de diagnóstico de faltas incipientes em transformadores, em que se obtém um sistema classificatório eficiente e com capacidade de explicação em relação aos resultados obtidos, o que gera mais confiança aos especialistas da área na hora de tomar decisões.
Resumo:
Ceramic parts are increasingly replacing metal parts due to their excellent physical, chemical and mechanical properties, however they also make them difficult to manufacture by traditional machining methods. The developments carried out in this work are used to estimate tool wear during the grinding of advanced ceramics. The learning process was fed with data collected from a surface grinding machine with tangential diamond wheel and alumina ceramic test specimens, in three cutting configurations: with depths of cut of 120 mu m, 70 mu m and 20 mu m. The grinding wheel speed was 35m/s and the table speed 2.3m/s. Four neural models were evaluated, namely: Multilayer Perceptron, Radial Basis Function, Generalized Regression Neural Networks and the Adaptive Neuro-Fuzzy Inference System. The models'performance evaluation routines were executed automatically, testing all the possible combinations of inputs, number of neurons, number of layers, and spreading. The computational results reveal that the neural models were highly successful in estimating tool wear, since the errors were lower than 4%.
Resumo:
This research aimed to develop a Fuzzy inference based on expert system to help preventing lameness in dairy cattle. Hoof length, nutritional parameters and floor material properties (roughness) were used to build the Fuzzy inference system. The expert system architecture was defined using Unified Modelling Language (UML). Data were collected in a commercial dairy herd using two different subgroups (H-1 and H-2), in order to validate the Fuzzy inference functions. The numbers of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) responses were used to build the classifier system up, after an established gold standard comparison. A Lesion Incidence Possibility (LIP) developed function indicates the chances of a cow becoming lame. The obtained lameness percentage in H-1 and H-2 was 8.40% and 1.77%, respectively. The system estimated a Lesion Incidence Possibility (LIP) of 5.00% and 2.00% in H-1 and H-2, respectively. The system simulation presented 3.40% difference from real cattle lameness data for H-1, while for H-2, it was 0.23%; indicating the system efficiency in decision-making.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Four longitudinal control techniques are compared: a classical Proportional-Integral (PI) control; an advanced technique-called the i-PI-that adds an intelligent component to the PI; a fuzzy controller based on human experience; and an adaptive-network-based fuzzy inference system. The controllers were designed to tackle one of the challenging topics as yet unsolved by the automotive sector: managing autonomously a gasoline-propelled vehicle at very low speeds. The dynamics involved are highly nonlinear and constitute an excellent test-bed for newly designed controllers. A Citroën C3 Pluriel car was modified to permit autonomous action on the accelerator and the brake pedals-i.e., longitudinal control. The controllers were tested in two stages. First, the vehicle was modeled to check the controllers' feasibility. Second, the controllers were then implemented in the Citroën, and their behavior under the same conditions on an identical real circuit was compared.
Resumo:
Experimental studies were carried out on a bench-scale nitrogen removal system with a predenitrification configuration to gain insights into the spatial and temporal variations of DO, pH and ORP in such systems. It is demonstrated that these signals correlate strongly with the operational states of the system, and could therefore be used as system performance indicators. The DO concentration in the first aerobic zone, when receiving constant aeration, and the net pH change between the last and first aerobic zones display strong correlations with the influent ammonia concentration for the domestic wastewater used in this study. The pH profile along the aerobic zones gives good indication on the extent of nitrification. The experimental results also showed a good correlation between ORP values in the last aerobic zone and effluent ammonia and nitrate concentrations, provided that DO in this zone is controlled at a constant level. These results suggest that the DO, pH and ORP sensors could potentially be used as alternatives to the on-line nutrient sensors for the control of continuous systems. An idea of using a fuzzy inference system to make an integrated use of these signals for on-line aeration control is presented and demonstrated on the bench-scale system with promising results. The use of these sensors has to date only been demonstrated in intermittent systems, such as sequencing batch reactor systems.
Resumo:
General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm.