935 resultados para Multi-Higgs Models
Resumo:
Pathological complete response (pCR) to neoadjuvant treatment correlates with outcome in breast cancer. We determined whether characteristics of neoadjuvant therapy are associated with pCR. We used multi-level models, which accounted for heterogeneity in pCR across trials and trial arms, to analyze individual patient data from 3332 women included in 7 German neoadjuvant trials with uniform protocols. PCR was associated with an increase in number of chemotherapy cycles (odds ratio [OR] 1.2 for every two additional cycles; P = 0.009), with higher cumulative anthracycline doses (OR 1.6; P = 0.002), higher cumulative taxane doses (OR 1.6; P = 0.009), and with capecitabine containing regimens (OR 1.62; P = 0.022). Association of pCR with increase in number of cycles appeared more pronounced in hormone receptor (HR)-positive tumors (OR 1.35) than in HR-negative tumors (OR 1.04; P for interaction = 0.046). Effect of anthracycline dose was particularly pronounced in HER2-negative tumors (OR 1.61), compared to HER2-positive tumors (OR 0.83; P for interaction = 0.14). Simultaneous trastuzumab treatment in HER2-positive tumors increased odds of pCR 3.2-fold (P < 0.001). No association of pCR and number of trastuzumab cycles was found (OR 1.20, P = 0.39). Dosing characteristics appear important for successful treatment of breast cancer. Longer treatment, higher cumulative doses of anthracyclines and taxanes, and the addition of capecitabine and trastuzumab are associated with better response. Tailoring according to breast cancer phenotype might be possible: longer treatment in HR-positive tumors, higher cumulative anthracycline doses for HER2-negative tumors, shorter treatment at higher cumulative doses for triple-negative tumors, and limited number of preoperative trastuzumab cycles in HER2-positive tumors.
Resumo:
The etiology of complex diseases is heterogeneous. The presence of risk alleles in one or more genetic loci affects the function of a variety of intermediate biological pathways, resulting in the overt expression of disease. Hence, there is an increasing focus on identifying the genetic basis of disease by sytematically studying phenotypic traits pertaining to the underlying biological functions. In this paper we focus on identifying genetic loci linked to quantitative phenotypic traits in experimental crosses. Such genetic mapping methods often use a one stage design by genotyping all the markers of interest on the available subjects. A genome scan based on single locus or multi-locus models is used to identify the putative loci. Since the number of quantitative trait loci (QTLs) is very likely to be small relative to the number of markers genotyped, a one-stage selective genotyping approach is commonly used to reduce the genotyping burden, whereby markers are genotyped solely on individuals with extreme trait values. This approach is powerful in the presence of a single quantitative trait locus (QTL) but may result in substantial loss of information in the presence of multiple QTLs. Here we investigate the efficiency of sequential two stage designs to identify QTLs in experimental populations. Our investigations for backcross and F2 crosses suggest that genotyping all the markers on 60% of the subjects in Stage 1 and genotyping the chromosomes significant at 20% level using additional subjects in Stage 2 and testing using all the subjects provides an efficient approach to identify the QTLs and utilizes only 70% of the genotyping burden relative to a one stage design, regardless of the heritability and genotyping density. Complex traits are a consequence of multiple QTLs conferring main effects as well as epistatic interactions. We propose a two-stage analytic approach where a single-locus genome scan is conducted in Stage 1 to identify promising chromosomes, and interactions are examined using the loci on these chromosomes in Stage 2. We examine settings under which the two-stage analytic approach provides sufficient power to detect the putative QTLs.
Resumo:
This article analyses the conditions influencing the commitment of members of sports clubs. It focuses not only on individual characteristics of members, but also on the corresponding structural conditions of sports clubs related to the individual decision to quit or continue their membership. The influences of both the individual and context levels on the commitment of members are estimated in different multi-level models. Results of these multi-level analyses indicate that commitment of members is not just an outcome of individual characteristics such as strong commitment to the club, positively perceived communication and cooperation, satisfaction with sports clubsʼ offers, or voluntary engagement. It is also influenced by club-specific structural conditions: commitment is more probable in rural sports clubs, and clubs who explicitly support sociability, whereas success-oriented sporting goals in clubs have a destabilizing effect.
Resumo:
Volunteers are the most important resource for non-profit sport clubs seeking to bolster their viability (e.g. sporting programs). Although many people do voluntary work in sport clubs, stable voluntary engagement can no longer be granted. This difficulty is confirmed by existing research across various European countries. From a club management point of view, a detailed understanding of how to attract volunteers and retain them in the long term is becoming a high priority. The purpose of this study is (1) to analyse the influence of individual characteristics and corresponding organisational conditions on volunteering in sports clubs as well as (2) to examine the decision-making processes in relation to implement effective strategies for recruiting volunteers. For the first perspective a multi-level framework for the investigation of the factors of voluntary engagement in sports clubs is developed. The individual and context factors are estimated in different multi-level models based on a sample of n = 1,434 sport club members from 36 sport clubs in Switzerland. Results indicate that volunteering is not just an outcome of individual characteristics such as lower workloads, higher income, children belonging to the sport club, longer club memberships, or a strong commitment to the club. It is also influenced by club-specific structural conditions; volunteering is more probable in rural sports clubs whereas growth-oriented goals in clubs have a destabilising effect. Concerning decision-making processes an in-depth analysis of recruitment practices for volunteers was conducted in nine selected sport clubs (case study design) based on the garbage can model. Results show that the decision-making processes are generally characterised by a reactive approach in which dominant actors try to handle personnel problems of recruitment in the administration and sport domains through routine formal committee work and informal networks. In addition, it proved possible to develop a typology that deliver an overview of different decision-making practices in terms of the specific interplay of the relevant components of process control (top-down vs. bottom-up) and problem processing (situational vs. systematic). Based on the findings some recommendations for volunteer management in sport clubs are worked out.
Resumo:
Introduction: Over the last decades, Swiss sports clubs have lost their "monopoly" in the market for sports-related services and increasingly are in competition with other sports providers. For many sport clubs long-term membership cannot be seen as a matter of course. Current research on sports clubs in Switzerland – as well as for other European countries – confirms the increasing difficulties in achieving long-term member commitment. Looking at recent findings of the Swiss sport clubs report (Lamprecht, Fischer & Stamm, 2012), it can be noted, that a decrease in memberships does not equally affect all clubs. There are sports clubs – because of their specific situational and structural conditions – that have few problems with member fluctuation, while other clubs show considerable declines in membership. Therefore, a clear understanding of individual and structural factors that trigger and sustain member commitment would help sports clubs to tackle this problem more effectively. This situation poses the question: What are the individual and structural determinants that influence the tendency to continue or to quit the membership? Methods: Existing research has extensively investigated the drivers of members’ commitment at an individual level. As commitment of members usually occurs within an organizational context, the characteristics of the organisation should be also considered. However, this context has been largely neglected in current research. This presentation addresses both the individual characteristics of members and the corresponding structural conditions of sports clubs resulting in a multi-level framework for the investigation of the factors of members’ commitment in sports clubs. The multilevel analysis grant a adequate handling of hierarchically structured data (e.g., Hox, 2002). The influences of both the individual and context level on the stability of memberships are estimated in multi-level models based on a sample of n = 1,434 sport club members from 36 sports clubs. Results: Results of these multi-level analyses indicate that commitment of members is not just an outcome of individual characteristics, such as strong identification with the club, positively perceived communication and cooperation, satisfaction with sports clubs’ offers, or voluntary engagement. It is also influenced by club-specific structural conditions: stable memberships are more probable in rural sports clubs, and in clubs that explicitly support sociability, whereas sporting-success oriented goals in clubs have a destabilizing effect. Discussion/Conclusion: The proposed multi-level framework and the multi-level analysis can open new perspectives for research concerning commitment of members to sports clubs and other topics and problems of sport organisation research, especially in assisting to understand individual behavior within organizational contexts. References: Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah: Lawrence Erlbaum. Lamprecht, M., Fischer, A., & Stamm, H.-P. (2012). Die Schweizer Sportvereine – Strukturen, Leistungen, Herausforderungen. Zurich: Seismo.
Resumo:
AIMS: To determine the efficacy of motivational enhancement therapy (MET) on alcohol use in patients with the hepatitis C virus (HCV) and an alcohol use disorder (AUD). DESIGN: Randomized, single-blind, controlled trial comparing MET to a control education condition with 6-month follow-up. SETTING: Patients were recruited from hepatitis clinics at the Minneapolis, Minnesota and Portland, Oregon Veterans Affairs Health Care Systems, USA. PARTICIPANTS AND INTERVENTION: Patients with HCV, an AUD and continued alcohol use (n = 139) were randomized to receive either MET (n = 70) or a control education condition (n = 69) over 3 months. MEASUREMENTS: Data were self-reported percentage of days abstinent from alcohol and number of standard alcohol drinks per week 6 months after randomization. FINDINGS: At baseline, subjects in MET had 34.98% days abstinent, which increased to 73.15% at 6 months compared to 34.63 and 59.49% for the control condition. Multi-level models examined changes in alcohol consumption between MET and control groups. Results showed a significant increase in percentage of days abstinent overall (F(1120.4) = 28.04, P < 0.001) and a significant group × time effect (F(1119.9) = 5.23, P = 0.024) with the MET group showing a greater increase in percentage of days abstinent at 6 months compared with the education control condition. There were no significant differences between groups for drinks per week. The effect size of the MET intervention was moderate (0.45) for percentage of days abstinent. CONCLUSION: Motivational enhancement therapy (MET) appears to increase the percentage of days abstinent in patients with chronic hepatitis C, alcohol use disorders and ongoing alcohol use. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Resumo:
Volunteers are still the most important resource for amateur football clubs. However, stable voluntary engagement can no longer be granted. This difficulty is confirmed by existing research across various European countries. From a club management point of view, a detailed understanding of how to attract volunteers and retain them is becoming a high priority. The purpose of this study is (1) to analyse the influence of individual characteristics and corresponding organisational conditions on volunteering and (2) to examine the decision-making processes in relation to implement effective strategies for recruiting volunteers. To answer these questions, the current state of research is summarised and then a multi-level-framework is developed which is based on the structural-individualistic social theory. The individual and context factors for volunteering are estimated in different multi-level models based on a sample of n=1,434 sport club members from 36 sport clubs in Switzerland. Results indicate that volunteering is not just an outcome of individual characteristics such as lower workloads, higher income, children belonging to the sport club, longer club membership, or a strong commitment to the club. It is also influenced by club-specific structural conditions. Concerning decision-making processes an in-depth analysis of recruitment practices for volunteers was conducted in selected clubs (case study design). based on the garbage can model. The results show that systematically designed decision-making processes with a clear regulation of responsibilities seem to solve personnel problems more purposefully and more quickly. Based on the findings some recommendations for volunteer management in football clubs are worked out.
Resumo:
The boundary element method is specially well suited for the analysis of the seismic response of valleys of complicated topography and stratigraphy. In this paper the method’s capabilities are illustrated using as an example an irregularity stratified (test site) sedimentary basin that has been modelled using 2D discretization and the Direct Boundary Element Method (DBEM). Site models displaying different levels of complexity are used in practice. The multi-layered model’s seismic response shows generally good agreement with observed data amplification levels, fundamental frequencies and the high spatial variability. Still important features such as the location of high frequencies peaks are missing. Even 2D simplified models reveal important characteristics of the wave field that 1D modelling does not show up.
Resumo:
Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (first-derivative) filter, or as zero-crossings (ZCs) in the second-derivative. A variety of multi-scale models are based on this idea. We tested this approach by devising a stimulus that has no local peaks of gradient and no ZCs, at any scale. Our stimulus profile is analogous to the classic Mach-band stimulus, but it is the local luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux. The luminance profile is a smoothed triangle wave and is obtained by integrating the gradient profile. Subjects used a cursor to mark the position and polarity of perceived edges. For all the ramp-widths tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These new Mach edges correspond to peaks and troughs in the third-derivative. They are analogous to Mach bands - light and dark bars are seen where there are no luminance peaks but there are peaks in the second derivative. Here, peaks in the third derivative were seen as light-to-dark edges, troughs as dark-to-light edges. Thus Mach edges are inconsistent with many standard edge detectors, but are nicely predicted by a new model that uses a (nonlinear) third-derivative operator to find edge points.
Resumo:
Often observations are nested within other units. This is particularly the case in the educational sector where school performance in terms of value added is the result of school contribution as well as pupil academic ability and other features relating to the pupil. Traditionally, the literature uses parametric (i.e. it assumes a priori a particular function on the production process) Multi-Level Models to estimate the performance of nested entities. This paper discusses the use of the non-parametric (i.e. without a priori assumptions on the production process) Free Disposal Hull model as an alternative approach. While taking into account contextual characteristics as well as atypical observations, we show how to decompose non-parametrically the overall inefficiency of a pupil into a unit specific and a higher level (i.e. a school) component. By a sample of entry and exit attainments of 3017 girls in British ordinary single sex schools, we test the robustness of the non-parametric and parametric estimates. We find that the two methods agree in the relative measures of the scope for potential attainment improvement. Further, the two methods agree on the variation in pupil attainment and the proportion attributable to pupil and school level.
Resumo:
Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.
Resumo:
This research analyzes the average previous stressed vowels [ε] and [e] and later [ɔ] and [o] in nominal and verbal forms in the 1st person singular and 3rd person singular and plural in the present tense, specifically the umlaut process of mid vowels /e/ and /o/, which assimilate in /ε/ and /ᴐ/ in stressed position. The general objective of this research is to describe and quantify the occurrence of umlaut and subsequently analyze in which words there is regularity or not. As specific objectives we have: i) to compile and to label an oral, spontaneous, synchronic and regional corpus, from radio programs produced in the city of Ituiutaba, Minas Gerais; ii) to describe the characteristics of the corpus to be compiled; iii) to investigate the alternating timbre of mid vowels in stressed position; iv) to identify instances of nominal and verbal umlaut of the middle vowels in stressed position; v) to describe the identified cases of nominal and verbal umlaut; vi) to analyze the probable causes for the variation of the middle vowels. To perform the proposed analysis, we have adopted as a theoretical-methodological basis multi-representational models: Phonology of Use (BYBEE, 2001) and Exemplar Theory (PIERREHUMBERT, 2001) combined with the precepts of Corpus Linguistics (BEBER SARDINHA, 2004). The corpus consisted of 16 radio programs – eight political and eight religious – from the city of Ituiutaba-MG, with recordings of about 20 to 40 minutes. We note, by means of the results generated by WordSmith Tools® software, version 6.0 (SCOTT, 2012), that the analyzed forms show little variation, which shows that the umlaut is a process already lexicalized in participants of the radio programs analyzed. We conclude that the results converge with the proposal of the Phonology of Use (BYBEE, 2001; PHILLIPS, 1984) that less frequent words that have no phonetic environment conducive to change, are changed first.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
Introduction The objectives of this thesis are to: (1) examine how ambulatory blood pressure monitoring (ABPM) refines office blood pressure (BP) measurement; (2) determine if absolute ambulatory BP or dipping status is better associated with target organ damage (TOD); (3) explore the association of isolated nocturnal hypertension (INH) with TOD; and (4) investigate the association of night-time BP with ultrasound markers of cardiovascular damage. Methods Data from the Mitchelstown Cohort Study was analysed to deliver objectives 1 and 2. Objective 3 was addressed by a systematic review and analysis of data from the Mitchelstown Study. A sample of participants from the Mitchelstown Study underwent an echocardiogram for speckle tracking analysis and carotid ultrasound to achieve objective 4. Results ABPM reclassifies hypertension status in approximately a quarter of individuals, with white coat and masked hypertension prevalence rates of 11% and 13% respectively. Night-time systolic BP is better associated with TOD than daytime systolic BP and dipping level. In multi-variable models the odds ratio (OR) for LVH was 1.4 (95% CI 1.1 -1.8) and for albumin:creatinine ratio ≥ 1.1 mg/mmol was 1.5 (95% CI 1.2 – 1.8) for each 10 mmHg rise in night-time systolic BP. The evidence for the association of INH with TOD is inconclusive. Night-time systolic BP is significantly associated with global longitudinal strain (GLS) (beta coefficient 0.85 for every 10 mmHg rise, 95% CI 0.3 – 1.4) and carotid plaques (OR 1.9 for every 10 mmHg rise, 95% CI 1.1 – 3.2) in univariable analysis. The findings persist for GLS in sex and age adjusted models but not in multivariable models. Discussion Hypertension cannot be effectively managed without using ABPM. Night-time systolic BP is better associated with TOD than daytime systolic BP and dipping level, and therefore, may be a better therapeutic target in future studies.
Resumo:
Different types of base fluids, such as water, engine oil, kerosene, ethanol, methanol, ethylene glycol etc. are usually used to increase the heat transfer performance in many engineering applications. But these conventional heat transfer fluids have often several limitations. One of those major limitations is that the thermal conductivity of each of these base fluids is very low and this results a lower heat transfer rate in thermal engineering systems. Such limitation also affects the performance of different equipments used in different heat transfer process industries. To overcome such an important drawback, researchers over the years have considered a new generation heat transfer fluid, simply known as nanofluid with higher thermal conductivity. This new generation heat transfer fluid is a mixture of nanometre-size particles and different base fluids. Different researchers suggest that adding spherical or cylindrical shape of uniform/non-uniform nanoparticles into a base fluid can remarkably increase the thermal conductivity of nanofluid. Such augmentation of thermal conductivity could play a more significant role in enhancing the heat transfer rate than that of the base fluid. Nanoparticles diameters used in nanofluid are usually considered to be less than or equal to 100 nm and the nanoparticles concentration usually varies from 5% to 10%. Different researchers mentioned that the smaller nanoparticles concentration with size diameter of 100 nm could enhance the heat transfer rate more significantly compared to that of base fluids. But it is not obvious what effect it will have on the heat transfer performance when nanofluids contain small size nanoparticles of less than 100 nm with different concentrations. Besides, the effect of static and moving nanoparticles on the heat transfer of nanofluid is not known too. The idea of moving nanoparticles brings the effect of Brownian motion of nanoparticles on the heat transfer. The aim of this work is, therefore, to investigate the heat transfer performance of nanofluid using a combination of smaller size of nanoparticles with different concentrations considering the Brownian motion of nanoparticles. A horizontal pipe has been considered as a physical system within which the above mentioned nanofluid performances are investigated under transition to turbulent flow conditions. Three different types of numerical models, such as single phase model, Eulerian-Eulerian multi-phase mixture model and Eulerian-Lagrangian discrete phase model have been used while investigating the performance of nanofluids. The most commonly used model is single phase model which is based on the assumption that nanofluids behave like a conventional fluid. The other two models are used when the interaction between solid and fluid particles is considered. However, two different phases, such as fluid and solid phases is also considered in the Eulerian-Eulerian multi-phase mixture model. Thus, these phases create a fluid-solid mixture. But, two phases in the Eulerian-Lagrangian discrete phase model are independent. One of them is a solid phase and the other one is a fluid phase. In addition, RANS (Reynolds Average Navier Stokes) based Standard κ-ω and SST κ-ω transitional models have been used for the simulation of transitional flow. While the RANS based Standard κ-ϵ, Realizable κ-ϵ and RNG κ-ϵ turbulent models are used for the simulation of turbulent flow. Hydrodynamic as well as temperature behaviour of transition to turbulent flows of nanofluids through the horizontal pipe is studied under a uniform heat flux boundary condition applied to the wall with temperature dependent thermo-physical properties for both water and nanofluids. Numerical results characterising the performances of velocity and temperature fields are presented in terms of velocity and temperature contours, turbulent kinetic energy contours, surface temperature, local and average Nusselt numbers, Darcy friction factor, thermal performance factor and total entropy generation. New correlations are also proposed for the calculation of average Nusselt number for both the single and multi-phase models. Result reveals that the combination of small size of nanoparticles and higher nanoparticles concentrations with the Brownian motion of nanoparticles shows higher heat transfer enhancement and thermal performance factor than those of water. Literature suggests that the use of nanofluids flow in an inclined pipe at transition to turbulent regimes has been ignored despite its significance in real-life applications. Therefore, a particular investigation has been carried out in this thesis with a view to understand the heat transfer behaviour and performance of an inclined pipe under transition flow condition. It is found that the heat transfer rate decreases with the increase of a pipe inclination angle. Also, a higher heat transfer rate is found for a horizontal pipe under forced convection than that of an inclined pipe under mixed convection.