944 resultados para Movements
Resumo:
Mammalian sex chromosomes stem from ancestral autosomes and have substantially differentiated. It was shown that X-linked genes have generated duplicate intronless gene copies (retrogenes) on autosomes due to this differentiation. However, the precise driving forces for this out-of-X gene "movement" and its evolutionary onset are not known. Based on expression analyses of male germ-cell populations, we here substantiate and extend the hypothesis that autosomal retrogenes functionally compensate for the silencing of their X-linked housekeeping parental genes during, but also after, male meiotic sex chromosome inactivation (MSCI). Thus, sexually antagonistic forces have not played a major role for the selective fixation of X-derived gene copies in mammals. Our dating analyses reveal that although retrogenes were produced ever since the common mammalian ancestor, selectively driven retrogene export from the X only started later, on the placental mammal (eutherian) and marsupial (metatherian) lineages, respectively. Together, these observations suggest that chromosome-wide MSCI emerged close to the eutherian-marsupial split approximately 180 million years ago. Given that MSCI probably reflects the spread of the recombination barrier between the X and Y, crucial for their differentiation, our data imply that these chromosomes became more widely differentiated only late in the therian ancestor, well after the divergence of the monotreme lineage. Thus, our study also provides strong independent support for the recent notion that our sex chromosomes emerged, not in the common ancestor of all mammals, but rather in the therian ancestor, and therefore are much younger than previously thought
Resumo:
Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.
Resumo:
The present study investigates developmental changes in selective inhibition of symmetric movements with a lateralized switching task from bimanual to unimanual tapping in typically developing (TD) children and with Developmental Coordination Disorder (DCD) from 7 to 10 years old. Twelve right-handed TD children and twelve gender-matched children with DCD and probable DCD produce a motor switching task in which they have (1) to synchronize with the beat of an auditory metronome to produce bimanual symmetrical tapping and (2) to selectively inhibit their left finger's tapping while continuing their right finger's tapping and conversely. We assess (1) the development of the capacity to inhibit the stopping finger (number of supplementary taps after the stopping instruction) and (2) the development of the capacity to maintain the continuing finger (changes in the mean tempo and its variability for the continuing finger's tapping) and (3) the evolution of performance through trials. Results indicate that (1) TD children present an age-related increase in the capacity to inhibit and to maintain the left finger's tapping, (2) DCD exhibits persistent difficulties to inhibit the left finger's tapping, and (3) both groups improve their capacity to inhibit the left finger's movements through trials. In conclusion, the lateralized switching task provides a simple and fine tool to reveal differences in selective inhibition of symmetric movements in TD children and children with DCD. More theoretically, the specific improvement in selective inhibition of the left finger suggests a progressive development of inter-hemispheric communication during typical development that is absent or delayed in children with DCD.
Resumo:
In plants, stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume, a process that is in turn regulated by complex environ¬mental and hormonal signals such as light and the phytohormone abscisic acid (ABA). With this study, we present genetic evidence that stomatal movements in response to ABA are influenced by PHOl expression in guard cells of Arabidopsis thaliana. PHOl is a phosphate exporter involved in phosphate loading into the root xylem ves¬sels and, as a result, the phol mutant is characterized by low shoot phosphate lev¬els. In leaves, PHOl was found expressed at higher level in guard cells, and was quickly up-regulated following treatment with ABA. The phol mutant was unaffected in ROS production following ABA treatment, and in stomatal movements in response to different light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Stomatal movements in re¬sponse to hydrogen peroxide and reduced CO2 was altered as well. Micro-grafting a phol shoot scion onto wild-type root stock resulted in plants with normal shoot growth and Pi content, but failed to restore normal stomatal response to ABA treat-ment, showing that the impairment was not a simple pleiotropic consequence of phos¬phate deficiency. PHOl knockdown using RNAi specifically in guard cells of wild-type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHOl in guard cells of phol plants complemented the mutant guard cell phenotype and re-established ABA sensitivity, although full functional complementation was co- dependent on shoot Pi sufficiency. Down-regulation of PHOl in guard cells did not alter the expression of ABA marker genes, indicating that PHOl does not affect the ABA signal transduction cascade at the transcriptional level. Together, these data reveal an important role for phosphate and PHOl action in the stomatal response to ABA. Résumé L'ouverture et la fermeture des stomates des plantes sont des mouvements contrôlés par des flux d'ions causant des fluctuations de la turgescence des cellules de garde. Ce procédé est en retour régulé par des signaux environnementaux et hormonaux complexes, comme la lumière et l'hormone végétale acide abscissique (ABA). Nous présentons ici des preuves génétiques montrant que les mouvements stomatiques en réponse à l'ABA sont influencés par l'expression de PHOl dans les cellules de garde d'Arabidopsis thaliana. PHOl est un exporteur de phosphate, impliqué dans l'efflux de phosphate des cellules corticales racinaires vers les vaisseaux de xylème. En con¬séquence, le mutant phol est caractérisé par de faibles niveaux de phosphate dans les parties aériennes. Dans les feuilles, PHOl est exprimé préférentiellement dans les cellules de garde, comparé au mésophylle, et est rapidement induit par le traitement à l'ABA. Le mutant phol n'est pas affecté dans la perception de l'ABA, dans la pro¬duction de ROS en réponse à l'ABA, et dans la réponse des stomates aux traitements de lumière, à l'auxine, à la fusiccocine, et la forte concentration extracellulaire de cal¬cium. En revanche, les mouvements de stomates en réponse aux traitements à l'ABA sont fortement affectés, dans l'induction de la fermeture des stomates comme dans l'inhibition de leur ouverture. De plus, les mouvements de stomates en réponse au péroxyde d'hydrogène et à la diminution du CO2 sont aussi compromis. La création de micro-greffes composées d'une partie aérienne phol greffés sur un système racinaire sauvage génère des plantes avec une croissance et une teneur en phosphate normale, mais ne permet pas de restaurer la réponse des stomates à l'ABA, ce qui démontre que le défaut de réponse à l'ABA n'est pas une simple conséquence pléiotropique de la carence en phosphate. La répression par RNAi de l'expression de PHOl dans les stomates de plantes sauvages provoque une réduction de la réponse des stomates à l'ABA, mais n'affecte pas la réponse de gènes marqueurs à l'ABA, ce qui suggère que PHOl n'agit pas au niveau transcriptionnel. Parallèlement, l'expression de PHOl dans les cellules de gardes de mutants phol complémente le phénotype stomatique mutant et rétablit la réponse à l'ABA, bien que la totale complémentation nécessite l'apport normal de phosphate aux parties aériennes. Ensemble, ces résultats révè¬lent l'influence importante de PHOl et du phosphate dans la réponse des stomates à l'ABA.
Resumo:
In this paper we study the evolution of the labor share in the OECD since 1970. We show it is essentially related to the capital-output ratio; that this relationship is shifted by factors like the price of imported materials or the skill mix; and that discrepancies between the marginal product of labor and the real wage (due to, e.g., product market power, union bargaining, and labor adjustment costs) cause departures from it. We provide estimates of the model with panel data on 14 industries and 14 countries for 1973-93 and use them to compute the evolution of the wage gap in Germany and the US.