959 resultados para Mouse Chromosome-2
Resumo:
The mouse rump white (Rw) mutation causes a pigmentation defect in heterozygotes and embryonic lethality in homozygotes. At embryonic day (E) 7.5, Rw/Rw embryos are retarded in growth, fail to complete neurulation and die around E 9.5. The Rw mutation is associated with a chromosomal inversion spanning 30 cM of the proximal portion of mouse chromosome 5. The Rw embryonic lethality is complemented by the W19H deletion, which spans the distal boundary of the Rw inversion, suggesting that the Rw lethality is not caused by the disruption of a gene at the distal end of the inversion. Here, we report the molecular characterization of sequences disrupted by both inversion breakpoints. These studies indicate that the distal breakpoint of the inversion is associated with ectopic Kit expression and therefore may be responsible for the dominant pigmentation defect in Rw/+ mice; whereas the recessive lethality of Rw is probably due to the disruption of the gene encoding dipeptidyl aminopeptidase-like protein 6, Dpp6 [Wada, K., Yokotani, N., Hunter, C., Doi, K., Wenthold, R. J. & Shimasaki, S. (1992) Proc. Natl. Acad. Sci. USA 89, 197–201] located at the proximal inversion breakpoint.
Resumo:
The region of human chromosome 22q11 is prone to rearrangements. The resulting chromosomal abnormalities are involved in Velo-cardio-facial and DiGeorge syndromes (VCFS and DGS) (deletions), “cat eye” syndrome (duplications), and certain types of tumors (translocations). As a prelude to the development of mouse models for VCFS/DGS by generating targeted deletions in the mouse genome, we examined the organization of genes from human chromosome 22q11 in the mouse. Using genetic linkage analysis and detailed physical mapping, we show that genes from a relatively small region of human 22q11 are distributed on three mouse chromosomes (MMU6, MMU10, and MMU16). Furthermore, although the region corresponding to about 2.5 megabases of the VCFS/DGS critical region is located on mouse chromosome 16, the relative organization of the region is quite different from that in humans. Our results show that the instability of the 22q11 region is not restricted to humans but may have been present throughout evolution. The results also underscore the importance of detailed comparative mapping of genes in mice and humans as a prerequisite for the development of mouse models of human diseases involving chromosomal rearrangements.
Resumo:
One approach to understanding common human diseases is to determine the genetic defects responsible for similar diseases in animal models and place those defective genes in their corresponding biochemical pathways. Our laboratory is working with an animal model for human rheumatoid arthritis called collagen-induced arthritis (CIA). We are particularly interested in determining the location of disease-predisposing loci. To that end, we performed experiments to localize susceptibility loci for CIA in an F2 cross between the highly susceptible mouse strain DBA/1j and the highly resistant mouse strain SWR/j. Specifically, a quantitative trait locus analysis was performed to localize regions of the mouse genome responsible for susceptibility/severity to CIA. One susceptibility locus, Cia1 in the major histocompatibility locus, had been identified previously. Two additional loci were detected in our analysis that contribute to CIA severity (Cia2, Cia3) on chromosomes 2 and 6. A third locus was detected that contributes to the age of onset of the disease. This locus (Cia4) was located on chromosome 2 and was linked to the same region as Cia2. Determining the identity of these loci may provide insights into the etiology of human rheumatoid arthritis.
Resumo:
Over 2 billion people are estimated to be infected with virulent Mycobacterium tuberculosis, yet fewer than 10% progress to clinical tuberculosis within their lifetime. Twin studies and variations in the outcome of tuberculosis infection after exposure to similar environmental risks suggest genetic heterogeneity among individuals in their susceptibility to disease. In a mouse model of tuberculosis, we have established that resistance and susceptibility to virulent M. tuberculosis is a complex genetic trait. A new locus with a major effect on tuberculosis susceptibility, designated sst1 (susceptibility to tuberculosis 1), was mapped to a 9-centimorgan (cM) interval on mouse chromosome 1. It is located 10–19 cM distal to a previously identified gene, Nramp1, that controls the innate resistance of mice to the attenuated bacillus Calmette–Guérin vaccine strain. The phenotypic expression of the newly identified locus is distinct from that of Nramp1 in that sst1 controls progression of tuberculosis infection in a lung-specific manner. Mice segregating at the sst1 locus exhibit marked differences in the growth rates of virulent tubercle bacilli in the lungs. Lung lesions in congenic sst1-susceptible mice are characterized by extensive necrosis and unrestricted extracellular multiplication of virulent mycobacteria, whereas sst1-resistant mice develop interstitial granulomas and effectively control multiplication of the bacilli. The resistant allele of sst1, although powerful in controlling infection, is not sufficient to confer full protection against virulent M. tuberculosis, indicating that other genes located outside of the sst1 locus are likely also to be important for controlling tuberculosis infection.
Resumo:
We previously generated a transgenic mouse model for acute promyelocytic leukemia (APL) by expressing the promyelocytic leukemia (PML)–retinoic acid receptor (RARα) cDNA in early myeloid cells. This fusion protein causes a myeloproliferative disease in 100% of animals, but only 15–20% of the animals develop acute leukemia after a long latency period (6–13 months). PML-RARα is therefore necessary, but not sufficient, for APL development. The coexpression of a reciprocal form of the fusion, RARα-PML, increased the likelihood of APL development (55–60%), but did not shorten latency. Together, these results suggested that additional genetic events are required for the development of APL. We therefore evaluated the splenic tumor cells from 18 transgenic mice with APL for evidence of secondary genetic events, by using spectral karyotyping analysis. Interstitial or terminal deletions of the distal region of one copy of chromosome 2 [del(2)] were found in 1/5 tumors expressing PML-RARα, but in 11/13 tumors expressing both PML-RARα and RARα-PML (P < 0.05). Leukemic cells that contained a deletion on chromosome 2 often contained additional chromosomal gains (especially of 15), chromosomal losses (especially of 11 or X/Y), or were tetraploid (P ≤ 0.001). These changes did not commonly occur in nontransgenic littermates, nor in aged transgenic mice that did not develop APL. These results suggest that expression of RARα-PML increases the likelihood of chromosome 2 deletions in APL cells. Deletion 2 appears to predispose APL cells to further chromosomal instability, which may lead to the acquisition of additional changes that provide an advantage to the transformed cells.
Resumo:
The Xenopus cerberus gene encodes a secreted factor that is expressed in the anterior endomesoderm of gastrula stage embryos and can induce the formation of ectopic heads when its mRNA is injected into Xenopus embryos [Bouwmeester, T., Kim, S., Lu, B. & De Robertis, E. M. (1996) Nature (London) 382, 595–601]. Here we describe the existence of a cerberus-related gene, Cerr1, in the mouse. Cerr1 encodes a putative secreted protein that is 48% identical to cerberus over a 110-amino acid region. Analysis of a mouse interspecific backcross panel demonstrated that Cerr1 mapped to the central portion of mouse chromosome 4. In early gastrula stage mouse embryos, Cerr1 is expressed in the anterior visceral endoderm and in the anterior definitive endoderm. In somite stage embryos, Cerr1 expression is restricted to the most recently formed somites and in the anterior presomitic mesoderm. Germ layer explant recombination assays demonstrated that Cerr1-expressing somitic-presomitic mesoderm, but not older Cerr1-nonexpressing somitic mesoderm, was able to mimic the anterior neuralizing ability of anterior mesendoderm and maintain Otx2 expression in competent ectoderm. In most Lim1−/− headless embryos, Cerr1 expression in the anterior endoderm was weak or absent. These results suggest that Cerr1 may play a role in anterior neural induction and somite formation during mouse development.
Resumo:
A mouse model for Down syndrome, Ts1Cje, has been developed. This model has made possible a step in the genetic dissection of the learning, behavioral, and neurological abnormalities associated with segmental trisomy for the region of mouse chromosome 16 homologous with the so-called “Down syndrome region” of human chromosome segment 21q22. Tests of learning in the Morris water maze and assessment of spontaneous locomotor activity reveal distinct learning and behavioral abnormalities, some of which are indicative of hippocampal dysfunction. The triplicated region in Ts1Cje, from Sod1 to Mx1, is smaller than that in Ts65Dn, another segmental trisomy 16 mouse, and the learning deficits in Ts1Cje are less severe than those in Ts65Dn. In addition, degeneration of basal forebrain cholinergic neurons, which was observed in Ts65Dn, was absent in Ts1Cje.
Resumo:
A transgenic mouse model of metastatic prostate cancer has been developed that is 100% penetrant in multiple pedigrees. Nucleotides −6500 to +34 of the mouse cryptdin-2 gene were used to direct expression of simian virus 40 T antigen to a subset of neuroendocrine cells in all lobes of the FVB/N mouse prostate. Transgene expression is initiated between 7 and 8 weeks of age and leads to development of prostatic intraepithelial neoplasia within a week. Prostatic intraepithelial neoplasia progresses rapidly to local invasion. Metastases to lymph nodes, liver, lung, and bone are common by 6 months. Tumorigenesis is not dependent on androgens. This model indicates that the neuroendocrine cell lineage of the prostate is exquisitely sensitive to transformation and provides insights about the significance of neuroendocrine differentiation in human prostate cancer.
Resumo:
The Deleted in AZoospermia (DAZ) genes encode potential RNA-binding proteins that are expressed exclusively in prenatal and postnatal germ cells and are strong candidates for human fertility factors. Here we report the identification of an additional member of the DAZ gene family, which we have called BOULE. With the identification of this gene, it is clear that the human DAZ gene family contains at least three members: DAZ, a Y-chromosome gene cluster that arose 30–40 million years ago and whose deletion is linked to infertility in men; DAZL, the “father” of DAZ, a gene that maps to human chromosome 3 and has homologs required for both female and male germ cell development in other organisms; and BOULE, a gene that we propose is the “grandfather” of DAZ and maps to human chromosome 2. Human and mouse BOULE resemble the invertebrate meiotic regulator Boule, the proposed ortholog of DAZ, in sequence and expression pattern and hence likely perform a similar meiotic function. In contrast, the previously identified human DAZ and DAZL are expressed much earlier than BOULE in prenatal germ stem cells and spermatogonia; DAZL also is expressed in female germ cells. These data suggest that homologs of the DAZ gene family can be grouped into two subfamilies (BOULE and DAZL) and that members of the DAZ family evolved from an ancestral meiotic regulator, Boule, to assume distinct, yet overlapping, functions in germ cell development.
Resumo:
Proteasomes are the multi-subunit protease thought to play a key role in the generation of peptides presented by major histocompatibility complex (MHC) class I molecules. When cells are stimulated with interferon gamma, two MHC-encoded subunits, low molecular mass polypeptide (LMP) 2 and LMP7, and the MECL1 subunit encoded outside the MHC are incorporated into the proteasomal complex, presumably by displacing the housekeeping subunits designated Y, X, and Z, respectively. These changes in the subunit composition appear to facilitate class I-mediated antigen presentation, presumably by altering the cleavage specificities of the proteasome. Here we show that the mouse gene encoding the Z subunit (Psmb7) maps to the paracentromeric region of chromosome 2. Inspection of the mouse loci adjacent to the Psmb7 locus provides evidence that the paracentromeric region of chromosome 2 and the MHC region on chromosome 17 most likely arose as a result of a duplication that took place at an early stage of vertebrate evolution. The traces of this duplication are also evident in the homologous human chromosome regions (6p21.3 and 9q33-q34). These observations have implications in understanding the genomic organization of the present-day MHC and offer insights into the origin of the MHC.
Resumo:
Sulfate is an essential ion required for numerous functions in mammalian physiology. Due to its hydrophilic nature, cells require sulfate transporters on their plasma membranes to allow entry of sulfate into cells. In this study, we identified a new mouse Na+-sulfate cotransporter (mNaS2), characterized its tissue distribution and determined its cDNA and gene (Slc13a4) structures. mNaS2 mRNA was expressed in placenta, brain, lung, eye, heart, testis, thymus and liver. The mouse NaS2 cDNA spans 3384 nucleotides and its open frame encodes a protein of 624 amino acids. Slc13a4 maps to mouse chromosome 6131 and contains 16 exons, spanning over 40 kb in length. Its 5'-flanking region contains CART- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, MTF-1, STAT6 and HNF4 consensus sequences. This is the first study to define the tissue distribution of mNaS2 and resolve its cDNA and gene structures, which will allow us to investigate mNaS2 gene expression in vivo and determine its role in mammalian physiology.
Resumo:
The karyotype of Amphisbaena ridleyi, an endemic species of the archipelago of Fernando de Noronha, in State of Pernambuco, Brazil, is described after conventional staining, Ag-NOR impregnation and fluorescence in situ hybridization (FISH) with a telomeric probe. The diploid number is 46, with nine pairs of macrochromosomes (three metacentrics, four subtelocentrics and two acrocentrics) and 14 pairs of microchromosomes. The Ag-NOR is located in the telomeric region of the long arm of metacentric chromosome 2 and FISH revealed signals only in the telomeric region of all chromosomes. Further cytogenetic data on other amphisbaenians as well as a robust phylogenetic hypothesis of this clade is needed in order to understand the evolutionary changes on amphisbaenian karyotypes.
Resumo:
We have previously detected two related murine nuclear proteins, p160 and p67, that can bind to the leucine zipper motif within the negative regulatory domain of the Myb transcription factor. We now describe the molecular cloning of cDNA corresponding to murine p160. The P160 gene is located on mouse chromosome 11, and related sequences are found on chromosomes 1 and 12. The predicted p160 protein is novel, and in agreement with previous studies, we find that the corresponding 4.5-kb mRNA is ubiquitously expressed. We showed that p67 is an N-terminal fragment of p160 which is generated by proteolytic cleavage in certain cell types. The protein encoded by the cloned p160 cDNA and an engineered protein (p67*) comprising the amino-terminal region of p160 exhibit binding specificities for the Myb and Jun leucine zipper regions identical to those of endogenous p160 and p67, respectively. This implies that the Myb-binding site of p160 lies within the N-terminal 580 residues and that the Jun-binding site is C-terminal to this position. Moreover, we show that p67* but not p160 can inhibit transactivation by Myb. Unexpectedly, immunofluorescence studies show that p160 is localized predominantly in the nucleolus. The implications of these results for possible functions of p160 are discussed.
Resumo:
Concentrations of follicle-stimulating hormone (FSH) have an important role in multiple ovulation. An association has been reported between mutations in the FSH receptor (FSHR) in a family with Increased twinning frequency. We sequenced the transmembrane region of FSHR (located on chromosome 2) in 21 unrelated mothers of dizygotic twins and found no differences to the published sequence. A linkage study of 183 sister pairs and trios, in which all sisters had given birth to spontaneous dizygotic twins, excluded linkage to this region of chromosome 2. Wa conclude that mutations in FSHR are not a common cause of familial dizygotic twinning.
Resumo:
A new algorithm, PfAGSS, for predicting 3' splice sites in Plasmodium falciparum genomic sequences is described. Application of this program to the published P. falciparum chromosome 2 and 3 data suggests that existing programs result in a high error rate in assigning 3' intron boundaries. (C) 2001 Elsevier Science B.V. All rights reserved.