440 resultados para Mounds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region’s past and offers a new context within which the late Holocene “Earthmovers” of the Llanos de Moxos could have emerged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use various data sets, including images from the High Resolution Imaging Science Experiment camera (HiRISE), to examine the ejecta of the generally fresh-looking Hale crater that occurs in the rugged mountain terrain of Nereidum Montes in the northern rim materials of the Argyre impact structure on Mars. Our investigation reveals that the distal parts of the Hale crater ejecta and other basin deposits behave like viscous flows, which we attribute to the secondary flow of ejecta mixed with water–ice-rich basin materials. Consistent with water-enrichment of the basin materials, our mapping further reveals occasionally deformed surfaces, including highly conspicuous features such as mounds and fractured plateaus that we interpret to be a result of periglacial modification, subsequent (including possibly present-day) to the transient localized melting and fluvial erosion caused by Hale-impact-generated heating. In particular, our morphometric analysis of a well-defined valley system west of Hale crater suggests that it may have been formed through hydrologic/glacial activity prior to the Hale impact, with additional modification resulting from the impact and subsequent geologic and hydrologic phenomena including glacial and periglacial activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hellas basin is a large impact basin situated in the southern highlands of Mars. The north-western part of the basin has the lowest elevation (-7.5 km) on the planet and contains a possibly unique terrain type, which we informally call “banded terrain”. The banded terrain is made up of smooth-looking banded deposits that display signs of viscous behavior and a paucity of superimposed impact craters. In this study, we use newly acquired high spatial resolution images from the High Resolution Imaging Science Experiment (HiRISE) in addition to existing datasets to characterize the geomorphology, the morphometry and the architecture of the banded terrain. The banded terrain is generally confined to the NW edge of the Alpheus Colles plateau. The individual bands are ~3–15 km-long, ~0.3 km-wide and are separated by narrow inter-band depressions, which are ~65 m-wide and ~10 m-deep. The bands display several morphologies that vary from linear to concentric forms. Morphometric analysis reveals that the slopes along a given linear or lobate band ranges from 0.5° to 15° (average~6°), whereas the concentric bands are located on flatter terrain (average slope~2–3°). Crater-size frequency analysis yields an Amazonian-Hesperian boundary crater retention age for the terrain (~3 Gyr), which together, with the presence of very few degraded craters, either implies a recent emplacement, resurfacing, or intense erosion. The apparent sensitivity to local topography and preference for concentrating in localized depressions is compatible with deformation as a viscous fluid. In addition, the bands display clear signs of degradation and slumping at their margins along with a suite of other features that include fractured mounds, polygonal cracks at variable size-scales, and knobby/hummocky textures. Together, these features suggest an ice-rich composition for at least the upper layers of the terrain, which is currently being heavily modified through loss of ice and intense weathering, possibly by wind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the observation of possible (hydraulic) open-system pingos (OSPs ) at the mid latitudes (∼37°S) in and around the Argyre impact-basin. OSPs are perennial (water)–ice cored mounds; they originate and evolve in periglacial and pro-glacial landscapes on Earth where intra- or sub-permafrost water under hydraulic/artesian pressure uplifts localised sections of surface or near-surface permafrost that then freezes in-situ. We invoke three lines of evidence in support of our analogue-based interpretation: (1) similarities of shape, size and summit traits between terrestrial OSPs and the Martian mounds; (2) clustered distribution and the slope-side location of the mounds, consistent with terrestrial permafrost-environments where OSPs are found; and, (3) spatially-associated landforms putatively indicative of periglacial and glacial processes on Mars that characterise OSP landscapes on Earth. This article presents five OSP candidate-locations and nests these mound locations within a new geological map of the Argyre impact-basin and margins. It also presents three periglacial hypotheses about the possible origin of the water required to develop the mounds. Alternative (non-periglacial) formation-hypotheses also are considered; however, we show that their robustness is not equal to that of the periglacial ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (CTX and HiRISE) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summer-time temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively “temperate” climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The social amoeba, Dictyostelium discoideum, undergoes a remarkable starvation-induced program of development that transforms a population of unicellular amoebae into a fruiting body composed of resistant spores suspended on a stalk. During this development, secreted cAMP drives chemotaxis of the amoebae, leading to their aggregation, and subsequent differentiation and morphogenesis. Four sequentially expressed G protein-coupled receptors (GPCRs) for cAMP play critical roles in this process. The first of these, cAR1, is essential for aggregation as it mediates chemotaxis as well as the propagation of secreted cAMP waves throughout aggregating populations. Ligand-induced internalization has been shown to regulate a variety of GPCRs. However, little was known at the outset of this study about the role of internalization in the regulation of cAR1 function or, for that matter, in developmental systems in general. For this study, cAMP-induced cAR1 internalization was assessed by measuring (1) the reduction of cell surface binding sites for [ 3H]cAMP and (2) the redistribution of YFP-tagged receptors to the cell's interior, cAMP was found to induce little or no loss of ligand binding (LLB) in vegetative cells. However, the ability to induce LLB increased progressively over the initial 6 hrs of development, reaching ∼70% in cells undergoing aggregation. Despite these reductions in surface binding, detectable cAR1-YFP redistribution could be induced by cAMP only after the cells reached the mound stage (10 hrs) and was found to occur naturally by the ensuing slug stage (18 hrs). Site-directed substitution of a cluster of 5 serines in the receptor's cytoplasmic tail that was previously shown to be the principal site of cAMP-induced cAR1 phosphorylation impaired both LLB and receptor redistribution and furthermore resulted in mound-stage developmental arrest, suggesting that phosphorylation of cAR1 is a prerequisite for its internalization and that cAR1 internalization is required for post-aggregative development. To assess the involvement of clathrin mediated endocytosis, Dictyostelium cells lacking the clathrin light chain gene (clc-) or either of two dynamin genes were examined and found to be defective in LLB and, in the case of clc- cells, also cAR1 redistribution and turnover. Furthermore, cAR1 overexpression in clc- cells (like the serine mutant in wild-type cells) promoted developmental arrest in mounds. The mound-arrest phenotype was also recapitulated in a wild-type background by the specific expression of cAR1 in prestalk cells (but not prespore cells), suggesting that development depends critically on internalization and clearance of cAR1 from these cells. Persistent cAR1 expression following aggregation was found to be associated with aberrant expression of prestalk and prespore genes, which may adversely affect development in the prestalk cell lineage. The PI3 kinase-TORC2 signal transduction pathway, known to be important for Dictyostelium chemotaxis and internalization of yeast pheromone receptors, was examined using chemical inhibitors and null cells and found to be necessary for cAR1 internalization. In conclusion, cAR1 was shown to be similar to other GPCRs in that its internalization depends on phosphorylation of cytoplasmic domain serines, utilizes clathrin and dynamin, and involves the TORC2 complex. In addition, the findings presented here that cAR1 internalization is both developmentally regulated and required for normal development represent a novel regulatory paradigm that might pertain to other GPCRs known to play important roles in the development of humans and other metazoans. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrothermal circulation at oceanic spreading ridges causes sea water to penetrate to depths of 2 to 3 km in the oceanic crust where it is heated to ~400 °C before venting at spectacular 'black smokers'. These hydrothermal systems exert a strong influence on ocean chemistry (Edmond et al., 1979, doi:10.1016/0012-821X(79)90061-X), yet their structure, longevity and magnitude remain largely unresolved (Elderfield and Schultz., 1996, doi:10.1146/annurev.earth.24.1.191). The active Transatlantic Geotraverse (TAG) deposit, at 26° N on the Mid-Atlantic Ridge, is one of the largest, oldest and most intensively studied of the massive sulphide mounds that accumulate beneath black-smoker fields. Here we report ages of sulphides and anhydrites from the recently drilled (Humphris et al., 1995, doi:10.1038/377713a0) TAG substrate structures -determined from 234U-230Th systematics analysed by thermal ionization mass spectrometry. The new precise ages combined with existing data (Lalou et al., 1993, doi:10.1029/92JB01898; 1998, doi:10.2973/odp.proc.sr.158.214.1998) show that the oldest material (11,000 to 37,000 years old) forms a layer across the centre of the deposit with younger material (2,300-7,800 years old) both above and below. This stratigraphy confirms that much of the sulphide and anhydrite are precipitated within the mound by mixing of entrained sea water with hydrothermal fluid (James and Elderfield, 1996, doi:10.1130/0091-7613(1996)024<1147:COOFFA>2.3.CO;2). The age distribution is consistent with episodic activity of the hydrothermal system recurring at intervals of up to 2,000 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continental rise west of the Antarctic Peninsula includes a number of large sediment mounds interpreted as contourite drifts. Cores from six sediment drifts spanning some 650 km of the margin and 48 of latitude have been dated using chemical and isotopic tracers of palaeoproductivity and diatom biostratigraphy. Interglacial sedimentation rates range from 1.1 to 4.3 cm/ka. Glacial sedimentation rates range from 1.8 to 13.5 cm/ka, and decrease from proximal to distal sites on each drift. Late Quaternary sedimentation was cyclic, with brown, biogenic, burrowed mud containing ice-rafted debris (IRD) in interglacials and grey, barren, laminated mud in glacials. Foraminiferal intervals occur in interglacial stages 5 and 7 but not in the Holocene. Processes of terrigenous sediment supply during glacial stages differed; meltwater plumes were more important in stages 2-4, turbidity currents and ice-rafting in stage 6. The terrigenous component shows compositional changes along the margin, more marked in glacials. The major oxides Al2O3 and K2O are higher in the southwest, and CaO and TiO2 higher in the northeast. There is more smectite among the clay minerals in the northeast. Magnetic susceptibility varies along and between drifts. These changes reflect source variations along the margin. Interglacial sediments show less clear trends, and their IRD was derived from a wider area. Downslope processes were dominant in glacials, but alongslope processes may have attained equal importance in interglacials. The area contrasts with the East Antarctic continental slope in the SE Weddell Sea, where ice-rafting is the dominant process and where interglacial sedimentation rates are much higher than glacial. The differences in glacial setting and margin physiography can account for these contrasts.

Relevância:

10.00% 10.00%

Publicador: