961 resultados para Motor unit activation
Resumo:
Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI) of everyday actions using functional magnetic resonance imaging (fMRI). For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI), however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.
Resumo:
Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain. (c) 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Low birth weight affects child growth and development, requiring the intensive use of health services. There are conversely proportional associations between prematurity and academic performance around the world. In this study we evaluated factors involved in weight and neuropsychomotor profile in one and two years old discharged from Intensive Care Units (ICU).Methods/Design: We investigated 203 children from the ICU who were followed for 24 +/- 4 months. The research was conducted by collecting data from medical records of patients in a Follow-up program. We investigated the following variables: inadequate weight at one year old; inadequate weight at two years old and a severe neurological disorder at two years old.Results: We observed increase of almost 20% in the proportion of children which weighted between the 10th and 90th percentiles and decrease of around 40% of children below the 15th percentile, from one to two years old. In almost 60% of the cases neuropsychomotor development was normal at 2 years old, less than 15% of children presented abnormal development. Variables that remained influential for clinical outcome at 1 and 2 years old were related to birth weight and gestational age, except for hypoglycemia. Neurological examination was the most influential variable for severe neurological disturbance.Conclusion: Hypoglycemia was considered a new fact to explain inadequate weight. The results, new in Brazil and difficult in terms of comparison, could be used to identify risk factors and for a better approach of newborn discharged from ICUs.
Resumo:
We used an assembly of electrodes C3 and C4-Cz in order to activate the motor cortical area of the corticobulbar tract to elucidate the motor-evoked potential of the contralateral mentalis muscle. We compared this setup to that of an assembly with electrodes C5 or C6-Cz using a train of electrical pulses and a single electrical pulse. This analysis was made in 23 consecutive patients who underwent several varied surgeries and were prospectively operated on at Santa Paula Hospital between January and June 2011. The results showed that the assembly with C5 or C6-Cz produced a multisynaptic motor-evoked potential in the contralateral mentalis muscle in 86.9 % of the patients, whereas 82.6 % of patients stimulated at points C3 or C4-Cz presented the same response. However, both assemblies showed similar behavior with the use of a single electrical pulse for peripheral contralateral nerve stimulation. We concluded that the C5 or C6-Cz assembly was similar to C3 or C4-Cz in obtaining a multisynaptic response in the contralateral mentalis muscle, although it required less intensive stimulation than the C3 or C4- Cz assembly.
Resumo:
Background: Low birth weight affects child growth and development, requiring the intensive use of health services. There are conversely proportional associations between prematurity and academic performance around the world. In this study we evaluated factors involved in weight and neuropsychomotor profile in one and two years old discharged from Intensive Care Units (ICU). Methods/Design: We investigated 203 children from the ICU who were followed for 24 +/- 4 months. The research was conducted by collecting data from medical records of patients in a Follow-up program. We investigated the following variables: inadequate weight at one year old; inadequate weight at two years old and a severe neurological disorder at two years old. Results: We observed increase of almost 20% in the proportion of children which weighted between the 10th and 90th percentiles and decrease of around 40% of children below the 15th percentile, from one to two years old. In almost 60% of the cases neuropsychomotor development was normal at 2 years old, less than 15% of children presented abnormal development. Variables that remained influential for clinical outcome at 1 and 2 years old were related to birth weight and gestational age, except for hypoglycemia. Neurological examination was the most influential variable for severe neurological disturbance. Conclusion: Hypoglycemia was considered a new fact to explain inadequate weight. The results, new in Brazil and difficult in terms of comparison, could be used to identify risk factors and for a better approach of newborn discharged from ICUs.
Resumo:
Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.
Resumo:
The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas.
Resumo:
The monkey premotor cortex contains neurons that discharge during action execution and during observation of actions made by others. Transcranial magnetic stimulation experiments suggest that a similar observation/execution matching system also is present in humans. We recorded neuromagnetic oscillatory activity of the human precentral cortex from 10 healthy volunteers while (i) they had no task to perform, (ii) they were manipulating a small object, and (iii) they were observing another individual performing the same task. The left and right median nerves were stimulated alternately (interstimulus interval, 1.5 s) at intensities exceeding motor threshold, and the poststimulus rebound of the rolandic 15- to 25-Hz activity was quantified. In agreement with previous studies, the rebound was strongly suppressed bilaterally during object manipulation. Most interestingly, the rebound also was significantly diminished during action observation (31–46% of the suppression during object manipulation). Control experiments, in which subjects were instructed to observe stationary or moving stimuli, confirmed the specificity of the suppression effect. Because the recorded 15- to 25-Hz activity is known to originate mainly in the precentral motor cortex, we concluded that the human primary motor cortex is activated during observation as well as execution of motor tasks. These findings have implications for a better understanding of the machinery underlying action recognition in humans.
Resumo:
Handedness is the clearest example of behavioral lateralization in humans. It is not known whether the obvious asymmetry manifested by hand preference is associated with similar asymmetry in brain activation during movement. We examined the functional activation in cortical motor areas during movement of the dominant and nondominant hand in groups of right-handed and left-handed subjects and found that use of the dominant hand was associated with a greater volume of activation in the contralateral motor cortex. Furthermore, there was a separate relation between the degree of handedness and the extent of functional lateralization in the motor cortex. The patterns of functional activation associated with the direction and degree of handedness suggest that these aspects are independent and are coded separately in the brain.
Resumo:
"17 July 1984."
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
"22 June 1979."
Resumo:
"3 March 1987."