990 resultados para Motor unit


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Upper limb paresis remains a relevant challenge in stroke rehabilitation. AIM: To evaluate if adding mirror therapy (MT) to conventional therapy (CT) can improve motor recovery of the upper limb in subacute stroke patients. DESIGN: Prospective, single-center, single-blind, randomised, controlled trial. SETTING: Subacute stroke patients referred to a Physical and Rehabilitation Medicine Unit between October 2009 and August 2011. POPULATION: Twenty-six subacute stroke patients (time from stroke <4 weeks) with upper limb paresis (Motricity Index â0/00¤ 77). METHODS: Patients were randomly allocated to the MT (N.=13) or to the CT group (N.=13). Both followed a comprehensive rehabilitative treatment. In addition, MT Group had 30 minutes of MT while the CT group had 30 minutes of sham therapy. Action Research Arm Test (ARAT) was the primary outcome measures. Motricity Index (MI) and the Functional Independence Measure (FIM) were the secondary outcome measures. RESULTS: After one month of treatment patients of both groups showed statistically significant improvements in all the variables measured (P<0.05). Moreover patients of the MT group had greater improvements in the ARAT, MI and FIM values compared to CT group (P<0.01, Glass's Î" Effect Size: 1.18). No relevant adverse event was recorded during the study. CONCLUSION: MT is a promising and easy method to improve motor recovery of the upper limb in subacute stroke patients. CLINICAL REHABILITATION IMPACT: While MT use has been advocated for acute patients with no or negligible motor function, it can be usefully extended to patients who show partial motor recovery. The easiness of implementation, the low cost and the acceptability makes this therapy an useful tool in stroke rehabilitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traction motor design significantly differs from industrial machine design. The starting point is the load cycle instead of the steady-state rated operation point. The speed of the motor varies from zero to very high speeds. At low speeds, heavy overloading is used for starting, and the field-weakening region also plays an important role. Finding a suitable fieldweakening point is one of the important design targets. At the lowest speeds, a high torque output is desired, and all current reserves of the supplying converter unit are used to achieve the torque. In this paper, a 110-kW 2.5-p.u. starting torque and a maximum 2.5-p.u. speed permanent-magnet traction motor will be studied. The field-weakening point is altered by varying the number of winding turns of machine. One design is selected for prototyping. Theoretical results are verified by measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study was to determine the oral motor capacity and the feeding performance of preterm newborn infants when they were permitted to start oral feeding. This was an observational and prospective study conducted on 43 preterm newborns admitted to the Neonatal Intensive Care Unit of UFSM, RS, Brazil. Exclusion criteria were the presence of head and neck malformations, genetic disease, neonatal asphyxia, intracranial hemorrhage, and kernicterus. When the infants were permitted to start oral feeding, non-nutritive sucking was evaluated by a speech therapist regarding force (strong vs weak), rhythm (rapid vs slow), presence of adaptive oral reflexes (searching, sucking and swallowing) and coordination between sucking, swallowing and respiration. Feeding performance was evaluated on the basis of competence (defined by rate of milk intake, mL/min) and overall transfer (percent ingested volume/total volume ordered). The speech therapist's evaluation showed that 33% of the newborns presented weak sucking, 23% slow rhythm, 30% absence of at least one adaptive oral reflex, and 14% with no coordination between sucking, swallowing and respiration. Mean feeding competence was greater in infants with strong sucking fast rhythm. The presence of sucking-swallowing-respiration coordination decreased the days for an overall transfer of 100%. Evaluation by a speech therapist proved to be a useful tool for the safe indication of the beginning of oral feeding for premature infants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quadcopter is a helicopter with four rotors, which is mechanically simple device, but requires complex electrical control for each motor. Control system needs accurate information about quadcopter’s attitude in order to achieve stable flight. The goal of this bachelor’s thesis was to research how this information could be obtained. Literature review revealed that most of the quadcopters, whose source-code is available, use a complementary filter or some derivative of it to fuse data from a gyroscope, an accelerometer and often also a magnetometer. These sensors combined are called an Inertial Measurement Unit. This thesis focuses on calculating angles from each sensor’s data and fusing these with a complementary filter. On the basis of literature review and measurements using a quadcopter, the proposed filter provides sufficiently accurate attitude data for flight control system. However, a simple complementary filter has one significant drawback – it works reliably only when the quadcopter is hovering or moving at a constant speed. The reason is that an accelerometer can’t be used to measure angles accurately if linear acceleration is present. This problem can be fixed using some derivative of a complementary filter like an adaptive complementary filter or a Kalman filter, which are not covered in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To develop a method for objective quantification of PD motor symptoms related to Off episodes and peak dose dyskinesias, using spiral data gathered by using a touch screen telemetry device. The aim was to objectively characterize predominant motor phenotypes (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Background: A retrospective analysis was conducted on recordings from 65 patients with advanced idiopathic PD from nine different clinics in Sweden, recruited from January 2006 until August 2010. In addition to the patient group, 10 healthy elderly subjects were recruited. Upper limb movement data were collected using a touch screen telemetry device from home environments of the subjects. Measurements with the device were performed four times per day during week-long test periods. On each test occasion, the subjects were asked to trace pre-drawn Archimedean spirals, using the dominant hand. The pre-drawn spiral was shown on the screen of the device. The spiral test was repeated three times per test occasion and they were instructed to complete it within 10 seconds. The device had a sampling rate of 10Hz and measured both position and time-stamps (in milliseconds) of the pen tip. Methods: Four independent raters (FB, DH, AJ and DN) used a web interface that animated the spiral drawings and allowed them to observe different kinematic features during the drawing process and to rate task performance. Initially, a number of kinematic features were assessed including ‘impairment’, ‘speed’, ‘irregularity’ and ‘hesitation’ followed by marking the predominant motor phenotype on a 3-category scale: tremor, bradykinesia and/or choreatic dyskinesia. There were only 2 test occasions for which all the four raters either classified them as tremor or could not identify the motor phenotype. Therefore, the two main motor phenotype categories were bradykinesia and dyskinesia. ‘Impairment’ was rated on a scale from 0 (no impairment) to 10 (extremely severe) whereas ‘speed’, ‘irregularity’ and ‘hesitation’ were rated on a scale from 0 (normal) to 4 (extremely severe). The proposed data-driven method consisted of the following steps. Initially, 28 spatiotemporal features were extracted from the time series signals before being presented to a Multilayer Perceptron (MLP) classifier. The features were based on different kinematic quantities of spirals including radius, angle, speed and velocity with the aim of measuring the severity of involuntary symptoms and discriminate between PD-specific (bradykinesia) and/or treatment-induced symptoms (dyskinesia). A Principal Component Analysis was applied on the features to reduce their dimensions where 4 relevant principal components (PCs) were retained and used as inputs to the MLP classifier. Finally, the MLP classifier mapped these components to the corresponding visually assessed motor phenotype scores for automating the process of scoring the bradykinesia and dyskinesia in PD patients whilst they draw spirals using the touch screen device. For motor phenotype (bradykinesia vs. dyskinesia) classification, the stratified 10-fold cross validation technique was employed. Results: There were good agreements between the four raters when rating the individual kinematic features with intra-class correlation coefficient (ICC) of 0.88 for ‘impairment’, 0.74 for ‘speed’, 0.70 for ‘irregularity’, and moderate agreements when rating ‘hesitation’ with an ICC of 0.49. When assessing the two main motor phenotype categories (bradykinesia or dyskinesia) in animated spirals the agreements between the four raters ranged from fair to moderate. There were good correlations between mean ratings of the four raters on individual kinematic features and computed scores. The MLP classifier classified the motor phenotype that is bradykinesia or dyskinesia with an accuracy of 85% in relation to visual classifications of the four movement disorder specialists. The test-retest reliability of the four PCs across the three spiral test trials was good with Cronbach’s Alpha coefficients of 0.80, 0.82, 0.54 and 0.49, respectively. These results indicate that the computed scores are stable and consistent over time. Significant differences were found between the two groups (patients and healthy elderly subjects) in all the PCs, except for the PC3. Conclusions: The proposed method automatically assessed the severity of unwanted symptoms and could reasonably well discriminate between PD-specific and/or treatment-induced motor symptoms, in relation to visual assessments of movement disorder specialists. The objective assessments could provide a time-effect summary score that could be useful for improving decision-making during symptom evaluation of individualized treatment when the goal is to maximize functional On time for patients while minimizing their Off episodes and troublesome dyskinesias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When looking at developing countries, the prolonged intensive medical and nursing care required by many patients places extra demands on an already stretched healthcare budget. The purpose of this study was to verify the effectiveness of a systematic rehabilitative program for swallowing and oral-motor movements in intensive care unit patients with the diagnosis of tetanus. Forty-five patients who were clinically diagnosed with tetanus were included in the study. Participants were divided in two groups: Cl - consisted of 18 tetanus patients who were consecutively admitted to the infectious disease ICU from January 2002 to December 2005, prior to the existence of a systematic swallowing and oral-motor intervention: GII - consisted of 27 tetanus patients who were consecutively admitted to the infectious disease ICU from January 2006 to December 2009 and were submitted to a specific rehabilitative management of swallowing and of the oral-motor movements. Results indicate that the proposed rehabilitative program reduced by approximately 50% the time patients remained in the ICU. The significant improvement observed in patients with tetanus who were submitted to the rehabilitative program for swallowing and oral-motor movements occurred in conjunction with a reduction in the amount of time necessary to reintroduce oral feeding, to decannulate and to remove the feeding tubes. In conclusion, swallowing/muscle exercise, in patients with severe/very severe tetanus, seem to promote the remission of muscle tension and seem to maximize functional swallowing. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ITA]La demenza consiste nel deterioramento, spesso progressivo, dello stato cognitivo di un individuo. Chi è affetto da demenza, presenta alterazioni a livello cognitivo, comportamentale e motorio, ad esempio compiendo gesti ossessivi, ripetitivi, senza uno scopo preciso. La condizione dei pazienti affetti da demenza è valutata clinicamente tramite apposite scale e le informazioni relative al comportamento vengono raccolte intervistando chi se ne occupa, come familiari, il personale infermieristico o il medico curante. Spesso queste valutazioni si rivelano inaccurate, possono essere fortemente influenzate da considerazioni soggettive, e sono dispendiose in termini di tempo. Si ha quindi l'esigenza di disporre di metodiche oggettive per valutare il comportamento motorio dei pazienti e le sue alterazioni patologiche; i sensori inerziali indossabili potrebbero costituire una valida soluzione, per questo scopo. L'obiettivo principale della presente attività di tesi è stato definire e implementare un software per una valutazione oggettiva, basata su sensori, del pattern motorio circadiano, in pazienti affetti da demenza ricoverati in un'unità di terapia a lungo termine, che potrebbe evidenziare differenze nei sintomi della malattia che interessano il comportamento motorio, come descritto in ambito clinico. Lo scopo secondario è stato quello di verificare i cambiamenti motori pre- e post-intervento in un sottogruppo di pazienti, a seguito della somministrazione di un programma sperimentale di intervento basato su esercizi fisici. --------------- [ENG]Dementia involves deterioration, often progressive, of a person's cognitive status. Those who suffer from dementia, present alterations in cognitive and motor behavior, for example performing obsessive and repetitive gestures, without a purpose. The condition of patients suffering from dementia is clinically assessed by means of specific scales and information relating to the behavior are collected by interviewing caregivers, such as the family, nurses, or the doctor. Often it turns out that these are inaccurate assessments that may be heavily influenced by subjective evaluations and are costly in terms of time. Therefore, there is the need for objective methods to assess the patients' motor behavior and the pathological changes; wearable inertial sensors may represent a viable option, so this aim. The main objective of this thesis project was to define and implement a software for a sensor-based assessment of the circadian motor pattern in patients suffering from dementia, hospitalized in a long-term care unit, which could highlight differences in the disease symptoms affecting the motor behavior, as described in the clinical setting. The secondary objective was to verify pre- and post-intervention changes in the motor patterns of a subgroup of patients, following the administration of an experimental program of intervention based on physical exercises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetylcholinesterase inhibitors (AChEIs) are effective in the treatment of cognitive symptoms in Alzheimer's disease (AD). Because the behavioral and psychological symptoms of dementia (BPSD) have also been attributed to central cholinergic deficits, we examined whether the AChEI rivastigmine can reduce motor activity as measured in a rater-independent manner by wrist actigraphy in agitated AD patients. A total of 20 consecutive AD inpatients (13 females, 7 males, 80.4+/-9.1 years, S.D.) were included from our geriatric psychiatry unit, all of whom were exhibiting agitated behavior not attributable to delirium. Patients were assigned randomly and in a single-blinded fashion to rivastigmine 3mg or placebo for 14 days. Motor activity levels were monitored using an actigraph worn continuously on the wrist of the non-dominant hand. At the beginning and end of the study, patients were assessed using the Neuropsychiatric Inventory (NPI) and Nurses' Observation Scale for Geriatric Patients (NOSGER). Patients in the rivastigmine group exhibited less agitation than placebo recipients on the NPI-agitation subscale, but not on NOSGER. Actigraphic measurements showed a tendency towards reduced motor activity in the rivastigmine group. Because rivastigmine usually exerts its main effects after a longer period of time, the short-term effects seen in our study justify further controlled clinical trials examining the use of rivastigmine in BPSD by means of actigraphy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To evaluate trends in the utilization of head, abdominal, thoracic and other body regions CTs in the management of victims of MVC at a level I trauma center from 1996 to 2006.^ Method. From the trauma registry, I identified patients involved in MVC's in a level I trauma center and categorized them into three age groups of 13-18, 19-55 and ≥56. I used International Classification of Disease (ICD-9-CM) codes to find the type and number of CTs examinations performed for each patient. I plotted the mean number of CTs per patient against year of admission to find the crude estimate of change in utilization pattern for each type of CT. I used logistic regression to assess whether repetitive CTs (≥ 2) for head, abdomen, thorax and other body regions were associated with age group and year of admission for MVC patients. I adjusted the estimates for gender, ethnicity, insurance status, mechanism and severity of injury, intensive care unit admission status, patient disposition (dead or alive) and year of admission.^ Results. Utilization of head, abdominal, thoracic and other body regions CTs significantly increased over 11-year period. Utilization of head CT was greatest in the 13-18 age group, and increased from 0.58 CT/patient in 1996 to 1.37 CT/patient in 2006. Abdominal CTs were more common in the ≥56+ age group, and increased from 0.33 CT/patient in 1996 to 0.72 CT/patient in 2006. Utilization of thoracic CTs was higher in the 56+ age group, and increased from 0.01 CT/patient in 1996 to 0.42 CT/patient in 2006. Utilization of other CTs did not change materially during the study period for adolescents, adults or older adults. In the multivariable analysis, after adjustment for potential confounders, repetitive head CTs significantly increased in the 13-18 age group (95% CI: 1.29-1.87, p=<0.001) relative to the 19-55 age group. Repetitive thoracic CT use was lower in adolescents (95% CI: 0.22-0.70, p=<0.001) relative to the 19-55 age group.^ Conclusion. There has been a substantial increase in the utilization of head, abdominal, thoracic and other CTs in the management of MVC patients. Future studies need to identify if increased utilization of CTs have resulted in better health outcome for these patients. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nas últimas décadas, a indústria automobilística mundial vem investindo no desenvolvimento tecnológico dos motores, com o objetivo de alcançar melhor eficiência energética e atender às legislações que limitam a quantidade de resíduos tóxicos nos gases de exaustão e menor consumo de combustível. Isso resultou na implantação dos sistemas de gerenciamento eletrônico do motor, que possibilitam funcionalidades para se controlar diversas variáveis do motor, aumentando consideravelmente o rendimento do motor. Este trabalho tem como objetivos explorar a dinâmica de um motor de combustão interna ciclo Otto, os sinais elétricos associados, e os componentes de seu gerenciamento eletrônico. A partir dessas informações, o trabalho apresenta o processo de analise dos sinais elétricos e as estratégias de controle utilizadas em um sistema de gerenciamento real. Assim, são desenvolvidos o hardware e o firmware de uma unidade microcontroladora para gerenciamento eletrônico do motor. O hardware foi elaborado com uma concepção centralizada, ou seja, foi usado apenas um microcontrolador de 32-bit para gerenciar todas as funções. O firmware de controle foi desenvolvido de forma modular baseado em modelos de malha fechada. O modelo matemático do motor foi identificado utilizando técnicas de controle em um veículo real, e a avalidação do modelo foi obtida através de testes em um dinamômetro inercial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Legislative Research Unit research response."