954 resultados para Motion path planning
Resumo:
This paper considers the problem of determining the time-optimal path of a fixed-wing Miniature Air Vehicle (MAV), in the presence of wind. The MAV, which is subject to a bounded turn rate, is required to eventually converge to a straight line starting from a known initial position and orientation. Earlier work in the literature uses Pontryagin's Minimum Principle (PMP) to solve this problem only for the no-wind case. In contrast, the present work uses a geometric approach to solve the problem completely in the presence of wind. In addition, it also shows how PMP can be used to partially solve the problem. Using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for cases with steady and time-varying wind. Some issues on real-time path planning are also addressed.
Resumo:
[EU]Lan honen gaia SCARA errobot motaren mugimendu gaitasunen analisia egitea da, eta ibilbideen sorkuntzarako metodoekin batera software grafiko batean inplementatzea mugimenduaren simulazioa egin ahal izateko. Errobot serieen zinematikaren oinarrizko ezagutzatik hasita, mota konkretu batetara aplikatu egiten da eta honek aurkezten dituen berezitasunak garatu egiten dira, bi helburutara bideratuta: SCARA errobotaren mugimendu gaitasunak ezagutzea. Ibilbideen sorkuntzarako metodo baten inplementazioa. Hasteko, gaiaren egoera aztertu da, aplikazio nagusien eta ibilbide moten informazioa batzeko. Halaber ibilbideen sorkuntzarako metodoak arakatu dira, erabilera honetarako aproposena aurkitzeko. Jarraian, errobotaren analisia burutu da, ohizko erreminta matematikoak erabiliz, funtsezkoak diren lan eremua eta kokapen singularrak lortzeko. Ostean, software grafikoa garatu da mugimendu gaitasun hauek simulatzeko. Ohiko aplikazioetan oinarritutako ibilbideak sortzeko aukerak gehitu dira. Amaitzeko, oztopoak saihesten dituen ibilbideen sorkuntzarako metodoa inplementatu da, “pick and place” ibilbide motaren barruan.
Desarrollo de una herramienta virtual destinada al diseño de una plataforma robótica reconfigurable.
Resumo:
[ES]Este proyecto tiene como objeto aumentar el conocimiento concerniente a mecanismos robóticos reconfigurables, así como ponerlo en práctica. Estos mecanismos pueden lograr rápidas transiciones y son capaces de adaptarse a sí mismos a muchos entornos diferentes, conduciendo a una reducción de costes y requerimientos de espacio. Para ello, se estudia el estado del arte, de manera que se pueda reunir información sobre las principales aplicaciones y oportunidades que este campo ofrece en diferentes áreas. A continuación, se requiere llevar a cabo un análisis cinemático de un robot específico, y junto a métodos de planificación de trayectorias, su implementación en un software gráfico para simular su movimiento. La herramienta de software “Matlab” va a ser la que permitirá llevar a cabo toda la programación y representación a lo largo de todo el proyecto.
Resumo:
研究多车辆多目标追逐的路径规划问题。提出两个基于混合整数线性规划(Mixed integer linear programming,MILP)的多目标追逐(Multi-target pursuit,MTP)模型:就近追逐和"一对一"使能追逐。在两个MIP追逐模型中,小车运动的状态方程考虑为具有线性阻尼的质点动力学方程。采用整数变量描述小车与障碍物的相对位置信息,提出"目标膨胀尺寸"的概念来描述对目标的追逐,定义小车的"追逐方向"。采用选取整变量的等高面法求解MILP追逐问题,并给出初始内点整变量的确定方法。最后给出仿真试验1对两个多目标追逐模型进行对比研究,仿真试验2证实了算法的效率。
Resumo:
在非结构化环境,移动机器人行驶运动规划和自主导航是非常挑战性的问题。基于实时的动态栅格地图,提出了一个快速的而又实效的轨迹规划算法,实现机器人在室外环境的无碰撞运动导航。AMOR是自主研发的室外运动移动机器人,它在2007年欧洲C-ELROB大赛中赢得了野外自主侦察比赛的冠军。它装备了SICK的激光雷达,用来获取机器人运动前方的障碍物体信息,建立实时动态的环境地图。以A*框架为基础的改造算法,能够在众多的路径中快速地找到最佳的安全行驶路径,实现可靠的自主导航。所有的测试和比赛结果表明所提方案是可行的、有效的。
Resumo:
针对以测距声纳为避碰传感器的一类欠驱动型AUV,提出了一种水平面和垂直面相结合的三维实时避碰方法。根据测距声纳和欠驱动AUV 的特殊性,首先从运动规划和路径规划2 个层次提出了AUV 混合型实时避碰结构,并分别设计了基于事件反馈监控的避碰自动机和基于免疫遗传的局部路径规划算法。多种典型障碍场景的半物理仿真实验表明,论文所提方法能够实现AUV 安全、稳定的三维避碰过程。
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
A distributed method for mobile robot navigation, spatial learning, and path planning is presented. It is implemented on a sonar-based physical robot, Toto, consisting of three competence layers: 1) Low-level navigation: a collection of reflex-like rules resulting in emergent boundary-tracing. 2) Landmark detection: dynamically extracts landmarks from the robot's motion. 3) Map learning: constructs a distributed map of landmarks. The parallel implementation allows for localization in constant time. Spreading of activation computes both topological and physical shortest paths in linear time. The main issues addressed are: distributed, procedural, and qualitative representation and computation, emergent behaviors, dynamic landmarks, minimized communication.
Resumo:
Path planning and control strategies applied to autonomous mobile robots should fulfil safety rules as well as achieve final goals. Trajectory planning applications should be fast and flexible to allow real time implementations as well as environment interactions. The methodology presented uses the on robot information as the meaningful data necessary to plan a narrow passage by using a corridor based on attraction potential fields that approaches the mobile robot to the final desired configuration. It employs local and dense occupancy grid perception to avoid collisions. The key goals of this research project are computational simplicity as well as the possibility of integrating this method with other methods reported by the research community. Another important aspect of this work consist in testing the proposed method by using a mobile robot with a perception system composed of a monocular camera and odometers placed on the two wheels of the differential driven motion system. Hence, visual data are used as a local horizon of perception in which trajectories without collisions are computed by satisfying final goal approaches and safety criteria
Resumo:
This paper tackles the path planning problem for oriented vehicles travelling in the non-Euclidean 3-Dimensional space; spherical space S3. For such problem, the orientation of the vehicle is naturally represented by orthonormal frame bundle; the rotation group SO(4). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to control systems defined on Lie groups. The oriented vehicles, in this case, are constrained to travel at constant speed in a forward direction and their angular velocities directly controlled. In this paper we identify controls that induce steady motions of these oriented vehicles and yield closed form parametric expressions for these motions. The paths these vehicles trace are defined explicitly in terms of the controls and therefore invariant with respect to the coordinate system used to describe the motion.
Resumo:
The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities
Resumo:
Finding single pair shortest paths on surface is a fundamental problem in various domains, like Geographic Information Systems (GIS) 3D applications, robotic path planning system, and surface nearest neighbor query in spatial database, etc. Currently, to solve the problem, existing algorithms must traverse the entire polyhedral surface. With the rapid advance in areas like Global Positioning System (CPS), Computer Aided Design (CAD) systems and laser range scanner, surface models axe becoming more and more complex. It is not uncommon that a surface model contains millions of polygons. The single pair shortest path problem is getting harder and harder to solve. Based on the observation that the single pair shortest path is in the locality, we propose in this paper efficient methods by excluding part of the surface model without considering them in the search process. Three novel expansion-based algorithms are proposed, namely, Naive algorithm, Rectangle-based Algorithm and Ellipse-based Algorithm. Each algorithm uses a two-step approach to find the shortest path. (1) compute an initial local path. (2) use the value of this initial path to select a search region, in which the global shortest path exists. The search process terminates once the global optimum criteria are satisfied. By reducing the searching region, the performance is improved dramatically in most cases.
Resumo:
Ce mémoire présente 2 types de méthodes pour effectuer la réorientation d’un robot sériel en chute libre en utilisant les mouvements internes de celui-ci. Ces mouvements sont prescrits à partir d’algorithmes de planification de trajectoire basés sur le modèle dynamique du robot. La première méthode tente de réorienter le robot en appliquant une technique d’optimisation locale fonctionnant avec une fonction potentielle décrivant l’orientation du système, et la deuxième méthode applique des fonctions sinusoïdales aux articulations pour réorienter le robot. Pour tester les performances des méthodes en simulation, on tente de réorienter le robot pour une configuration initiale et finale identiques où toutes les membrures sont alignées mais avec le robot ayant complété une rotation de 180 degrés sur lui-même. Afin de comparer les résultats obtenus avec la réalité, un prototype de robot sériel plan flottant possédant trois membrures et deux liaisons rotoïdes est construit. Les expérimentations effectuées montrent que le prototype est capable d’atteindre les réorientations prescrites si peu de perturbations extérieures sont présentes et ce, même si le contrôle de l’orientation est effectué en boucle ouverte.
Resumo:
This paper describes the current status of a program to develop an automated forced landing system for a fixed-wing Unmanned Aerial Vehicle (UAV). This automated system seeks to emulate human pilot thought processes when planning for and conducting an engine-off emergency landing. Firstly, a path planning algorithm that extends Dubins curves to 3D space is presented. This planning element is then combined with a nonlinear guidance and control logic, and simulated test results demonstrate the robustness of this approach to strong winds during a glided descent. The average path deviation errors incurred are comparable to or even better than that of manned, powered aircraft. Secondly, a study into suitable multi-criteria decision making approaches and the problems that confront the decision-maker is presented. From this study, it is believed that decision processes that utilize human expert knowledge and fuzzy logic reasoning are most suited to the problem at hand, and further investigations will be conducted to identify the particular technique/s to be implemented in simulations and field tests. The automated UAV forced landing approach presented in this paper is promising, and will allow the progression of this technology from the development and simulation stages through to a prototype system