520 resultados para Moreton-Chabrillan, de


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seagrass meadows are important marine carbon sinks, yet they are threatened and declining worldwide. Seagrass management and conservation requires adequate understanding of the physical and biological factors determining carbon content in seagrass sediments. Here, we identified key factors that influence carbon content in seagrass meadows across several environmental gradients in Moreton Bay, SE Queensland. Sampling was conducted in two regions: (1) Canopy Complexity, 98 sites on the Eastern Banks, where seagrass canopy structure and species composition varied while turbidity was consistently low; and (2) Turbidity Gradient, 11 locations across the entire bay, where turbidity varied among sampling locations. Sediment organic carbon content and seagrass structural complexity (shoot density, leaf area, and species specific characteristics) were measured from shallow sediment and seagrass biomass cores at each location, respectively. Environmental data were obtained from empirical measurements (water quality) and models (wave height). The key factors influencing carbon content in seagrass sediments were seagrass structural complexity, turbidity, water depth, and wave height. In the Canopy Complexity region, carbon content was higher for shallower sites and those with higher seagrass structural complexity. When turbidity varied along the Turbidity Gradient, carbon content was higher at sites with high turbidity. In both regions carbon content was consistently higher in sheltered areas with lower wave height. Seagrass canopy structure, water depth, turbidity, and hydrodynamic setting of seagrass meadows should therefore be considered in conservation and management strategies that aim to maximize sediment carbon content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abiotic factors are fundamental drivers of the dynamics of wild marine fish populations. Identifying and quantifying their influence on species targeted by the fishing industry is difficult and very important for managing fisheries in a changing climate. Using multiple regression, we investigated the influence of both temperature and rainfall on the variability of recruitment of a tropical species, the brown tiger prawn (Penaeus esculentus), in Moreton Bay which is located near the southern limit of its distribution on the east coast of Australia. A step-wise selection between environmental variables identified that variations in recruitment from 1990 to 2014 were best explained by a combination of temperature and spawning stock biomass. Temperature explains 35% of recruitment variability and spawning stock biomass 33%. This analysis suggests that increasing temperatures have increased recruitment of brown tiger prawn in Moreton Bay.