998 resultados para Molecular phylogenetics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kayotypes of four neotropical teiid lizard species (Tupinambinae) were herein studied after conventional as well as silver staining and CBG-banding: Crocodilurus amazonicus (2n = 34), Tupinambis teguixin (2n = 36), Tupinambis merianae and Tupinambis quadrilineatus (2n = 38). The karyological data for T. quadrilineatus as well as those obtained using differential staining for all species were unknown until now. The karyotypes of all species presented 12 macrochromosomes identical in morphology, but differed in the number of microchromosomes: 22 in C. amazonicus, 24 in T. teguixin and 26 in T. quadrilineatus and T. merianae. The Ag-NOR located at the secondary constriction at the distal end of pair 2 is shared by all species, contrasting with the variability observed for this character in species of the related Teiinae. CBG-banding revealed a species-specific pattern in T. quadrilineatus with conspicuous interstitial C-blocks at the proximal region of the long arm of pair 4 and the whole heterochromatic short arm of pair 6. The karyological data reported here corroborates the relationship hypothesis obtained for Tupinambis based on molecular characters. T. teguixin presents the putative ancestral karyotype for the genus with 2n = 36 whereas T. merianae and T. quadrilineatus exhibit 2n = 38, due to an additional pair of microchromosomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phylogenetic analyses of chloroplast DNA sequences, morphology, and combined data have provided consistent support for many of the major branches within the angiosperm, clade Dipsacales. Here we use sequences from three mitochondrial loci to test the existing broad scale phylogeny and in an attempt to resolve several relationships that have remained uncertain. Parsimony, maximum likelihood, and Bayesian analyses of a combined mitochondrial data set recover trees broadly consistent with previous studies, although resolution and support are lower than in the largest chloroplast analyses. Combining chloroplast and mitochondrial data results in a generally well-resolved and very strongly supported topology but the previously recognized problem areas remain. To investigate why these relationships have been difficult to resolve we conducted a series of experiments using different data partitions and heterogeneous substitution models. Usually more complex modeling schemes are favored regardless of the partitions recognized but model choice had little effect on topology or support values. In contrast there are consistent but weakly supported differences in the topologies recovered from coding and non-coding matrices. These conflicts directly correspond to relationships that were poorly resolved in analyses of the full combined chloroplast-mitochondrial data set. We suggest incongruent signal has contributed to our inability to confidently resolve these problem areas. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xanthomonadales comprises one of the largest phytopathogenic bacterial groups, and is currently classified within the gamma-proteobacteria. However, the phylogenetic placement of this group is not clearly resolved, and the results of different studies contradict one another. In this work, the evolutionary position of Xanthomonadales was determined by analyzing the presence of shared insertions and deletions (INDELs) in highly conserved proteins. Several distinctive insertions found in most of the members of the gamma-proteobacteria are absent in Xanthomonadales and groups such as Legionelalles, Chromatiales, Methylococcales, Thiotrichales and Cardiobacteriales. These INDELs were most likely introduced after the branching of Xanthomonadales from most of the gamma-proteobacteria and provide evidence for the phylogenetic placement of the early gamma-proteobacteria. Moreover, other proteins contain insertions exclusive to the Xanthomonadales order, confirming that this is a monophyletic group and provide important specific genetic markers. Thus, the data presented clearly support the Xanthomonadales group as an independent subdivision, and constitute one of the deepest branching lineage within the gamma-proteobacteria clade. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Zapnionus genus group comprises three drosophilid genera (Zaprionus, Phorticella and Samoaia) that are thought to be related to the Drosophila immigrans species group. We revised the phylogenetic relationships among the three genera and their placement within the subfamily Drosophilinae using one mitochondrial (COII) and one nuclear (Amyrel) gene. The Bayesian tree inferred from concatenated amino acid sequences of the two genes strongly suggests the polyphyly of the Zaprionus genus group and of each of the genera Zaprionus and Phorticella. Paraphyly of the D. immigrans species group was also shown here; the quadrilineata subgroup formed the sister clade to the genus Samoaia. These results suggest the necessity of taxonomic revisions for some relevant genera and species groups included within the genus Drosophila. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study the Minos element was analyzed in 26 species of the repleta group and seven species of the saltans group of the genus Drosophila. The PCR and Southern blot analysis showed a wide occurrence of the Minos transposable element among species of the repleta and the saltans groups and also a low number of insertions in both genomes. Three different analyses, nucleotide divergence, historical associations, and comparisons between substitution rates (d(N) and d(S)) of Minos and Adh host gene sequences, suggest the occurrence of horizontal transfer between repleta and saltans species. These data reinforce and extend the Arca and Savakis [Genetica 108 (2000) 263] results and suggest five events of horizontal transfer to explain the present Minos distribution: between D. saltans and the ancestor of the mulleri and the mojavensis clusters; between D. hydei and the ancestor of the mulleri and the mojavensis clusters; between D. mojavensis and D. aldrichi; between D. buzzatii and D. serido; and between D. spenceri and D. emarginata. An alternative explanation would be that repeated events of horizontal transfer involving D. hydei, which is a cosmopolitan species that diverged from the others repleta species as long as 14 Mya, could have spread Minos within the repleta group and to D. saltans. The data presented in this article support a model in which distribution of Minos transposon among Drosophila species is determined by horizontal transmission balanced by vertical inactivation and extinction. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Neotropical bat genus Chiroderma consists of five recognized species. This study uses DNA-sequence variation of the mitochondrial cytochrome b gene to infer the phylogenetic relationships within Chiroderma. Phylogenetic relationships deduced from these data by parsimony analyses resulted in the discovery of a single most-parsimonious tree with C. salvini diverging basal to the other four species of Chiroderma and sister-group relationships of C. villosum with C. improvisum and C. trinitatum with C. doriae. This is a relatively young group of species with approximate times of divergence ranging from 1.6 million years before present (mya) for the divergence of C. doriae from C. trinitatum to 4.6 mya for the divergence of C. salvini from the other four species of Chiroderma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Few are studies on P elements that have addressed the saltans group. These studies had shown that species from the cordata and elliptica subgroups were devoid of any discernible P homologous sequences, while species from the parasaltans, sturtevanti, and saltans subgroups all contain P element sequences. Our analyses showed the presence of one to 15 P element insertion sites in species of the saltans group, including Drosophila neocordata and Drosophila emarginata (cordata and elliptica subgroups, respectively). From these species, only those from the parasaltans, sturtevanti, and saltans subgroups harbor canonical P elements and, only those of the last two subgroups seem to harbor putative full-sized elements. Due to the low similarity of the sequences found in D. neocordata and D. emarginata to those earlier described, we suggest that these sequences might be rudimental P element derivatives that were present in the ancestral of the subgenus Sophophora. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The family Callichthyidae, divided into the subfamilies Corydoradinae and Callichthyinae, contains more than 200 species of armoured catfishes distributed throughout the Neotropics, as well as fossil species dating from the Palaeocene. Both subfamilies are very widely distributed throughout the continent, with some species ranges extending across multiple hypothesized biogeographical barriers. Species with such vast geographical ranges could be made up of multiple cryptic populations that are genetically distinct and have diverged over time. Although relationships among Callichthyinae genera have been thoroughly investigated, the historical biogeography of the Callichthyinae and the presence of species complexes have yet to be examined. Furthermore, there is a lack of fossil-calibrated molecular phylogenies providing a time frame for the evolution of the Callichthyinae. Here, we present a novel molecular data set for all Callichthyinae genera composed of partial sequences of mitochondrial and nuclear markers. These data were used to construct a fossil-calibrated tree for the Callichthyinae and to reconstruct patterns of spatiotemporal evolution. All phylogenetic analyses [Bayesian, maximum likelihood and maximum parsimony (MP)] resulted in a single fully resolved and well-supported hypothesis for the Callichthyinae, where Dianema is the sister group of all the remaining genera. Results suggest that the ancestry of most Callichthyinae genera originated in the Amazonas basin, with a number of subsequent ancestral dispersal events between adjacent basins. High divergences in sequences and time were observed for several samples of Hoplosternum littorale, Megalechis picta and Callichthys callichthys, suggesting that these species may contain cryptic diversity. The results highlight the need for a taxonomic revision of species complexes within the Callichthyinae, which may reveal more diversity within this relatively species-poor lineage. © 2013 Blackwell Verlag GmbH.