265 resultados para Molding
Resumo:
Polymer nanocomposites offer the potential of enhanced properties such as increased modulus and barrier properties to the end user. Much work has been carried out on the effects of extrusion conditions on melt processed nanocomposites but very little research has been conducted on the use of polymer nanocomposites in semi-solid forming processes such as thermoforming and injection blow molding. These processes are used to make much of today’s packaging, and any improvements in performance such as possible lightweighting due to increased modulus would bring signi?cant bene?ts both economically and environmentally. The work described here looks at the biaxial deformation of polypropylene–clay nanocomposites under industrial forming conditions in order to determine if the presence of clay affects processability, structure and mechanical properties of the stretched material. Melt compounded polypropylene/clay composites in sheet form were biaxially stretched at a variety of processing conditions to examine the effect of high temperature, high strain and high strain rate processing on sheet structure
and properties.
A biaxial test rig was used to carry out the testing which imposed conditions on the sheet that are representative of those applied in injection blow molding and thermoforming. Results show that the presence of clay increases the yield stress relative to the un?lled material at typical processing temperatures and that the sensitivity of the yield stress to temperature is greater for the ?lled material. The stretching process is found to have a signi?cant effect on the delamination and alignment of clay particles (as observed by TEM) and on yield stress and elongation at break of the stretched sheet.
Resumo:
BACKGROUND: In vitro release testing of vaginal formulations is usually performed in a one-compartment model (OCM) where the release medium, usually comprising pH-adjusted water, an aqueous surfactant solution or a solvent-water solution, provides sink conditions throughout the release experiment. Although this model is useful in evaluating the effect of formulation parameters upon release, it rarely reflects in vivo conditions. Here we report use of a two-compartment diffusion cell model (TCM, comprising a small volume donor, a large volume receptor, and separated by a model epithelial membrane) to more closely mimic in vivo vaginal release and tissue absorption following administration of a UC781 vaginal ring.
METHODS: Macaque-sized matrix silicone elastomer vaginal rings containing 100mg UC781 were prepared by injection molding, and in vitro release testing performed using both OCM (20mL simulated vaginal fluid, SVF) and TCM (5mL SVF in donor cell and variable quantities of Tween 80; silicone elastomer membrane; 100mL 3:2 ethanol/water in receptor cell). In the TCM, drug levels were measured by HPLC in both donor and receptor cells, representing fluid and tissue levels respectively. Rings containing 100mg UC781 and 10% w/w Tween 80 were also manufactured and tested.
RESULTS: The amount of UC781 released from rings was significantly influenced by the choice of release model. Greatest release (56mg/14 days) was measured in the ethanol/water OCM, compared with no measurable release into SVF only. Increasing the concentration of Tween 80 in the SVF medium (1, 3 and 5% w/w) led to increased UC781 release (11, 16 and 18mg, respectively), demonstrating that vaginal fluid solubility of UC781 may be rate-determining in vivo. In the TCM, UC781 accumulates in the receptor cell medium over time, despite not being measured in the donor medium containing the ring device. Incorporation of Tween 80 directly into the ring provided enhanced release in both donor and receptor cells.
CONCLUSIONS: Release of UC781 was influenced by the choice of release medium and the inclusion of Tween 80 in the ring. Although use of SVF-only in the OCM indicated no measurable UC781 release from rings, data from the TCM confirms that UC781 is not only released but is also capable of penetrating across the model epithelial membrane. The TCM may therefore provide a more representative in vitro release model for mimicking in vivo absorption.
Resumo:
This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).
Resumo:
Background: There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine.
Study design: Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices.
Results: A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm.
Conclusions: The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Water-sediment exchange is a fundamental component of oxyanion cycling in the environment. Yet, many of the (im)mobilization processes overlay complex spatial and temporal redox regimes that occur within millimeters of the interface. Only a few methods exist that can reliably capture these porewater fluxes, with the most popular being high-resolution diffusive gradients in thin films (HR-DGT). However, functionality of HR-DGT is restricted by the availability of suitable analyte binding agents within the sampler, which must be simple to cast and homogeneously distributed in the binding layer, exhibit adequate sorption capacities, be resistive to chemical change, and possess a very fine particle size (≤10 μm). A novel binding layer was synthesized to meet these requirements by in situ precipitation of zirconia into a precast hydrogel. The particle diameter ≤0.2 μm of zirconia in this precipitated gel was uniform and at least 50-times smaller than the conventional molding approach. Further, this gel had superior binding and stability characteristics compared with the commonly used ferrihydrite HR-DGT technique and could be easily fabricated as an ultrathin gel (60 μm) for simultaneous oxygen imaging in conjunction with planar-optodes. Chemical imaging of anion and oxygen fluxes using the new sampler were evaluated on Lake Taihu sediments.
Resumo:
A presente investigação teve como objectivo aplicar, em contexto experimental, alguns conceitos e técnicas da Teoria do Movimento de Rudolf Laban numa acção de formação em regência e avaliar os respectivos efeitos nas competências gestuais dos regentes nela participantes. O estudo teve como base teórica o principio de que a gestualidade do regente é uma “manifestação exterior de impulsos interiores…” (Laban, 1978:32) e que a música, na sua essência, é uma “forma simbólica do sentimento humano”, “um movimento sonoro”, “… um análogo da vida emotiva”. (Susanne Langer, 1980:28) Com a adopção destes pressupostos procurou dar-se coerência às diferentes componentes envolvidas na problemática desta investigação. A parte experimental do estudo teve quatro momentos distintos. No primeiro, foi realizada uma gravação-vídeo para documentar os desempenhos dos estagiários antes da realização das formações (gravação pre-test). No segundo momento, os estagiários tiveram ocasião de frequentar um curso de Movimento Laban ministrado por um especialista nesta matéria, convidado para o efeito. Esta acção de formação terminou com uma gravação-vídeo, efectuada nas mesmas condições técnicas e programáticas da anterior (gravação post-test). Em terceiro lugar, realizou-se, sob orientação do autor do presente estudo, uma segunda acção de formação com o objectivo de plasmar os conceitos e técnicas de Laban na gestualidade específica da regência. Como corolário desta formação, foi realizado o último registo-vídeo (gravação repost-test). Estas gravações foram posteriormente editadas sem alterações técnicas e de conteúdo. Os dados, nelas constantes, foram analisados e avaliados por dois especialistas em regência, a partir de questionários previamente concebidos e fornecidos para o efeito. Após leitura dos pareceres dos especialistas expressos nesses questionários, o autor do presente estudo concluiu que a aplicação dos princípios e técnicas de Laban ao ensino da regência podem contribuir para promover, extensivamente, as competências gestuais dos regentes, tanto no plano da sua funcionalidade, como na sua dimensão expressiva.
Resumo:
Tese de doutoramento, Belas-Artes (Ciências da Arte), Universidade de Lisboa, Faculdade de Belas-Artes, 2014
Resumo:
Abrasion by glass fibers during injection molding of fiber reinforced plastics raises new challenges to the wear performance of the molds. In the last few decades, a large number of PVD and CVD coatings have been developed with the aim of minimizing abrasion problems. In this work, two different coatings were tested in order to increase the wear resistance of the surface of a mold used for glass fiber reinforced plastics: TiAlSiN and CrN/CrCN/DLC. TiAlSiN was deposited as a graded monolayer coating while CrN/CrCN/DLC was a nanostructured coating consisting of three distinct layers. Both coatings were produced by PVD unbalanced magnetron sputtering and were characterized using scanning electron microscopy (SEM) provided with energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), micro hardness (MH) and scratch test analysis. Coating morphology, thickness, roughness, chemical composition and structure, hardness and adhesion to the substrate were investigated. Wear resistance was characterized through industrial tests with coated samples and an uncoated reference sample inserted in a feed channel of a plastic injection mold working with 30 wt.% glass fiber reinforced polypropylene. Results after 45,000 injection cycles indicate that the wear resistance of the mold was increased by a factor of 25 and 58, by the TiAlSiN and CrN/CrCN/DLC coatings, respectively, over the uncoated mold steel.
Resumo:
Mestrado em Engenharia Química - Ramo Otimização Energética na Indústria Química
Resumo:
OBJECTIVE: In the last decade, some attention has been given to spirituality and faith and their role in cancer patients' coping. Few data are available about spirituality among cancer patients in Southern European countries, which have a big tradition of spirituality, namely, the Catholic religion. As part of a more general investigation (Southern European Psycho-Oncology Study--SEPOS), the aim of this study was to examine the effect of spirituality in molding psychosocial implications in Southern European cancer patients. METHOD: A convenience sample of 323 outpatients with a diagnosis of cancer between 6 to 18 months, a good performance status (Karnofsky Performance Status > 80), and no cognitive deficits or central nervous system (CNS) involvement by disease were approached in university and affiliated cancer centers in Italy, Spain, Portugal, and Switzerland (Italian speaking area). Each patient was evaluated for spirituality (Visual Analog Scale 0-10), psychological morbidity (Hospital Anxiety and Depression Scale--HADS), coping strategies (Mini-Mental Adjustment to Cancer--Mini-MAC) and concerns about illness (Cancer Worries Inventory--CWI). RESULTS. The majority of patients (79.3%) referred to being supported by their spirituality/faith throughout their illness. Significant differences were found between the spirituality and non-spirituality groups (p ≤ 0.01) in terms of education, coping styles, and psychological morbidity. Spirituality was significantly correlated with fighting spirit (r = -0.27), fatalism (r = 0.50), and avoidance (r = 0.23) coping styles and negatively correlated with education (r = -0.25), depression (r = -0.22) and HAD total (r = -0.17). SIGNIFICANCE OF RESULTS: Spirituality is frequent among Southern European cancer patients with lower education and seems to play some protective role towards psychological morbidity, specifically depression. Further studies should examine this trend in Southern European cancer patients.
Resumo:
Dissertação de Mestrado em Políticas de Desenvolvimento de Recursos Humanos
Resumo:
As we find in Empire and Multitude, Antonio Negri's political project IS a thoroughly Marxist analysis and critique of global or late capitalism. By modifying and updating Marx's conceptual tools, he is able to provide a clear account of capitalism's processes, its expanding reach, and the revolutionary potential that functions as its motor. By turning to Negri's philosophical works, however, we find that this political analysis is founded on a series of concepts and theoretical positions. This paper attempts to clarify this theoretical foundation, highlighting in particular what I term "ontological constructivism" - Negri's radical reworking of traditional ontology. Opposing the long history of transcendence in epistemology and metaphysics (one that stretches from Plato to Kant), this reworked ontological perspective positions individuals - not god or some other transcendent source - as the primary agents responsible for molding the ontological landscape. Combined with his understanding of kairos (subjective, immeasurable time), ontological constructivism lays the groundwork for opposing transcendence and rethinking contemporary politics.
Resumo:
La version intégrale de ce mémoire est disponible uniquement pour consultation individuelle à la Bibliothèque de musique de l’Université de Montréal (http://www.bib.umontreal.ca/MU).
Resumo:
Chemically modified novel thermo-reversible zinc sulphonated ionomers based on natural rubber (NR), radiation induced styrene grafted natural rubber (RI-SGNR), and chemically induced styrene grafted natural rubber (CI-SGNR) were synthesized using acetyl sulphate/zinc acetate reagent system. Evidence for the attachment of sulphonate groups has been furnished by FTIR spectra. which was supplanted by FTNMR results. Estimation of the zinc sulphonate group was done using spectroscopic techniques such as XRFS and ICPAES. The TGA results prove improvement in the therrno-oxidative stability of the modified natural rubber. Both DSC and DMTA studies show that the incorporation of the ionic groups affect the thermal transition of the base polymer. Retention of the improved physical properties of the novel ionomers even after three repeated cycles of mastication and molding at 120 degree C may be considered as the evidence for the reprocessabiJity of the ionomer. Effect of both particulate (carbon black. silica & zinc stearate) and fibrous fillers (nylon & glass) on the properties of the radiation induced styrene grafted natural rubber ionomer has been evaluated. Incorporation of HAF carbon black results in maximum improvement in physical properties. Silica reinforces the backbone chain and weakens the ionic associations. Zinc stearate plays the dual role of reinforcement and ptasticization. The nylon and glass filled lonorner compounds show good improvement in the physical properties in comparison with the neat ionomer. Dispersion and adhesion of the fillers in the ionomer matrix has been amply supported by their SEM micrographs. Microwave probing of the electrical behavior of the 26.5 ZnSRISGNR ionomer reveals that the maximum relative complex conductivity and the complex permittivity appear at the frequency of 2.6 GHz. The complex conductivity of the base polymer increases from 1.8x 10.12 S/cm to 3.3xlO·4 S/cm. Influence of fillers on the dielectric constant and conductivity of the new ionic thermoplastic elastomer has been studied. The ionomer I nylon compound shows the highest microwave conductivity. Use of the 26.5 ZnS-RISGNR ionomer as a compatibilizer for obtaining the technologically compatible blends from the immiscible SBR/NBR system has been verified. The heat fugitive ionic cross-linked natural rubber may be, therefore, useful as an alternative to vulcanized rubber and thermoplastic elastomer
Resumo:
Novel thermo-reversible zinc sulphonated ionomers based on styrene butadiene rubber (SBR), and high styrene rubber (HSH) were synthesized by sulphonation followed by neutralization with zinc. The sulphonate content of the ionomer was estimated by using x-ray fluorescence spectroscopy. Presence of sulphonate groups has been confirmed by FTIR and FTNMR spectra. The TGA results show improvement in the thermo~oxidative stability of the modified rubber. Both DSC and DMTA studies show that the incorporation of the ionic groups affect the glass rubber transition of the base polymer. lntroduction ol ionic functionality in to the base material improved the physical properties. Retention of the improved physical properties of the novel ionomers even after three repeated cycles of mixing and molding may be considered as the evidence for the reprocessability of the ionomer. Effect of particulate fillers (HAF black, silica and zinc stearate) on the properties of the zinc sulphonated styrene butadiene rubber ionomer has been evaluated. Incorporation of tillers results in improvement in mechanical properties. Zinc stearate plays the dual role of reinforcement and plasticization. The evaluation of dielectric properties of zinc sulphonated styrene butadiene rubber iorpmers at microwave frequencies reveal that the materials show conductivity at semiconductor level. The real and imaginary parts of the complex permittivity increases with increase in ionic functionality. Use of the 38.5 ZnS-SBR ionomer as a compatibiliser for obtaining the technologically compatible blends from the immiscible SBR/NBR system has been discussed.